Search Results

1 - 10 of 14 items :

  • "pulse plasma" x
Clear All
Liquid micro pulsed plasma thruster

References 1. Barral, S., Kurzyna, J., Szelecka, A., Rachubiński, H., Remírez, E., Martín, R., Ortiz, P., Alonso, J., Bottinelli, S., Mabillard, Y., Zaldívar, A., Rangsten, P., & Koppel, C. (2014). First experimental characterization of a pulsed plasma thruster with non-volatile liquid propellant. In Proceedings of Space Propulsion Conference, 19–22 May 2014. Cologne, Germany. 2. Rezaeiha, A., & Schönherr, T. (2013). Overview of alternative propellants for use in PPT. In 29th International Symposium on Space Technology and Science ISTS, 2–9 June 2013

Open access
Influence of modulation frequency on the synthesis of thin films in pulsed magnetron sputtering processes


The research on the influence of modulation frequency on the properties of films synthesized using a unique pulsed power supply combined with a standard unbalanced circular magnetron was conducted in the process of pulsed magnetron sputtering (PMS). It was shown that by using different levels of modulation, the composition of plasma (measured by optical emission spectroscopy, OES) as well as film growth rate and morphology (observed with scanning electron microscope, SEM), can be changed. The impact of modulation is related to the used materials and gases and can vary significantly. It was concluded that modulation frequency can greatly influence the synthesis of materials and can be used as an additional parameter in PMS. Specific relations between modulation frequency and synthesized material require further investigation.

Open access
Advanced laboratory for testing plasma thrusters and Hall thruster measurement campaign

References 1. Biagioni, L., Saverdi, M., Berti, M., Cesari, U., & Andrenucci, M. (2003). Design and preliminary characterization of a 5 kW Hall thruster prototype. (Report IEPC-03-228). 2. Barral, S., Kurzyna, J., Remírez, E., Martín, R., Ortiz, P., Alonso, J., Bottinelli, S., Mabillard, Y., Zaldíva, A., Rangsten, P., & Koppel, C. R. (2013). Development status of an open capilla pulsed plasma thruster with non-volatile liquid propellant. In Proceedings of the 33rd International Electric Propulsion Conference, The George

Open access
Seismic Isolation of Bridges Using the Principle of Electromagnetic Attraction and Repulsion

REFERENCES [1]. S. USUBA, R.B. HEIMANN: “Dense Si 3 N 4 Coatings with High Friction Coefficient Deposited by High-Velocity Pulsed Plasma Spraying” , Journal of Thermal Spray Technology, Volume 15(3) September 2006 [2] AMERICAN SOCIETY FOR METALS: „ Metals Handbook ”, 8th edition, Vol. 1, p792, 1966 [3]. R.A. MATULA: „ Electrical Resistivity of Copper, Gold, Palladium and Silver ” J. Phys. Chem. Ref. Data, Vol. 8, No. 4, 1979 [4]. U.T.C.B.: „ Cod de Proiectare Seismică P100-1 ”, 2013 [5]. G. RODOLFO SARAGONI, GARY C. HART

Open access
Properties of AlN thin films deposited by means of magnetron sputtering for ISFET applications

wann C.P., T sao M.W., R abolt J.F., Appl. Surf. Sci. , 175 – 176 (2001), 428. [7] T aguchi G., K onishi S., Orthogonal Arrays and Linear Graphs , ASI Press, Dearborn, 1987. [8] M roczyński R., B eck R.B., J. Vac. Sci. Technol. B , 27 (1) (2009), 494. [9] F irek P., W erbowy A., K onarski P., S zmidt J., O lszyna O., Influence of the temperature on electronic properties of carbon-rich BN films obtained from (C 2 H 5 ) 3 B by means of Reactive Pulse Plasma method , in: L ee J., N ovikov N., T urkevich V. (Eds.), Innovative

Open access
Studies of plasma interactions with tungsten targets in PF-1000U facility

, M., Zielinska, E., & Makhlaj, V. A. (2015). Comparison of optical spectra recorded during DPF-1000U plasma experiments with gas-puffing. Nukleonika, 60(2), 309-314. DOI: 10.1515/nuka-2015-0058. 6. Skladnik-Sadowska, E., Malinowski, K., Sadowski, M. J., Wolowski, J., Gasior, P., Kubkowska, M., Rosinski, M., Marchenko, A. K., & Sartowska, B. (2009). Spectroscopy of the tungsten plasma produced by pulsed plasma-ion streams or laser beams. J. Nucl. Mater., 390/391, 847-851. DOI: 10.1016/j. jnucmat.2009.01.223.

Open access
Effect of Plasma Nitriding Process Conditions on Corrosion Resistance of 440B Martensitic Stainless Steel

alloys - Basic terms and definitions. 8. Podgornik B., Vizintin J., Leskovsek V. (1998), Tribological properties of plasma and pulse plasma nitrided AISI 4140 steel, Surface and Coatings Technology, Vol. 108-109, 454-460. 9. Sirin S. Y., Kaluc, E. (2012), Structural surface characterization of ion nitrided AISI 4340 steel, Materials and Design, Vol. 36, 741-747. 10. Soltani Asadi Z., Mahboubi F. (2012), Effect of component’s geometry on the plasma nitriding behavior of AISI 4340 steel, Materials and Design, Vol. 34, 516

Open access
Direct Current and Pulsed Direct Current Plasma Nitriding of Ferrous Materials a Critical Review

martensitic and precipitation hardening stainless steels treated by plasma nitriding, Surface and Coatings Technology , Vol. 204, 3280-3286. 15. Corengia P., Traverso M.G., García Alonso-García D., Egidi D.A., Ybarra G., Moina C., Cabo A. (2004a), DC-Pulsed plasma nitriding of 4140: microstructure and topography, Matéria , Vol. 9, 111. 16. Corengia P., Ybarra G., Moina C., Cabo A., Broitman E. (2004b), Microstructure and corrosion behaviour of DC-pulsed plasma nitrided AISI 410 martensitic stainless steel, Surface and Coatings Technology , Vol. 187, 63

Open access
Comparison of optical spectra recorded during DPF-1000U plasma experiments with gas-puffing

. (2012). Optical emission spectroscopy of pulsed plasma streams emitted from a modified PF-1000 facility. Problems of Atomic Science and Technology , Seria: Plasma Phys ., 82 (6), 246–248. 3. Skladnik-Sadowska, E., Kwiatkowski, R., Malinowski, K., Sadowski, M. J., Żebrowski, J., Kubkowska, M., Paduch, M., Scholz, M., Gribkov, V. A., Garkusha, I. E., Ladygina, M. S., & Marchenko, A. K. (2013). Optical emission spectroscopy of free-propagating plasma streams and plasma produced during their interactions with solid targets. Problems of Atomic Science and

Open access
Macroscopic Thin Film Deposition Model for the Two-Reactive-Gas Sputtering Process

] Kubart, T., Polcar, T., Kappertz, O., Parreira, N., Nyberg, T., Berg, S., and Cavaleiro, A., „Modelling of magnetron sputtering of Tungsten Oxide with reactive gas pulsing”, Plasma Processes and Polymers, 2007, 4, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim , pp. S522–S526, DOI: 10.1002/ppap.200731301. [7] Görgy, K., „Cercetări privind dezvoltarea unor electrotehnologii pentru depunerea straturilor metalice subţiri”, Teză de doctorat, Universitatea Tehnică din Cluj-Napoca , 2010. [8] Christie D., J., „Making magnetron sputtering work: Modelling reactive

Open access