Search Results

1 - 1 of 1 items :

  • "polystyrene CNP" x
Clear All

Abstract

In this study, novel polyacrylonitrile/polystyrene (PAN/PS) blend has been prepared and reinforced with carbon nanoparticle to form polyacrylonitrile/polystyrene/carbon nanoparticle (PAN/PS/CNP) nanocomposite foam. Acid-functional carbon nanoparticle (0.1-3 wt.%) was used as nano-reinforcement for PAN/PS blend matrix. 2’-azobisisobutyronitrile was employed as foaming agent. The PAN/PS/CNP nanocomposite foams have been tested for structure, morphology, mechanical properties, thermal stability, non-flammability, water uptake, and toxic ion removal. Field-emission scanning electron microscopy and transmission electron microscopy exposed unique nanocellular morphology owing to physical interaction between the matrix and functional CNP. PAN/PS/CNP 0.1 Foam with 0.1 wt.% nanofiller had compression strength, modulus, and foam density of 41.8 MPa, 22.3 GPa, and 0.9 mgcm−3, respectively. Nanofiller loading of 3wt.% (PAN/PS/CNP 3 Foam) considerably enhanced the compression strength, modulus, and foam density as 68.2 MPa, 37.7 GPa, and 1.9 mgcm−3, respectively. CNP reinforcement also enhanced the initial weight loss and maximum decomposition temperature of PAN/PS/CNP 3 Foam to 541 and 574 ºC, relative to neat foam (T0 = 411 ºC; T10 = 459 ºC). Nanocomposite foams have also shown excellent flame retardancy as V-0 rating and high char yield of up to 57% were attained. Due to hydrophilic nature of functional carbon nanoparticle, water absorption capacity of 3 wt.% nanocomposite foam was 30% higher than that of pristine foam. Moreover, novel foams were also tested for the removal of toxic Pb2+ ions. PAN/PS/CNP 3 Foam has shown much higher ion removal capacity (166 mg/g) and efficiency (99 %) than that of PAN/PS foam having removal capacity and efficiency of 90 mg/g and 45 %, respectively.