Search Results

1 - 10 of 176 items :

  • "phytoremediation" x
Clear All

, Environmental Science and Pollution Research, 20, 3, pp. 1310-1317. Hare, P.D. & Cress, W.A. (1997). Metabolic implications of stress- -induced proline accumulation in plants, Plant Growth Regulation, 21, 2, pp. 79-102. Ibáñez, S.G., Alderete, L.G.S., Medina, M.I. & Agostini, E. (2012). Phytoremediation of phenol using Vicia sativa L. plants and its antioxidative response, Environmental Science and Pollution Research, 19, 5, pp. 1555-1562. Jia, L., He, X.Y., Chen, W., Liu, Z.L., Huang, Y.Q. & Yu, S. (2013). Hormesis phenomena under Cd stress in a hyperaccumulator - Lonicera

). Phytoremediation of soil contaminated with hazardous chemicals: a field assessment at the Craney Island fuel terminal. In: Final Report of DOD AATDF project. Rice University Publishing, USA 1998. Baranowska-Morek, A. (2003). Mechanisms of plants tolerance to toxic influence of heavy metals, Kosmos, 52 (2–3), pp. 283–298. (in Polish) Bar-Ness, E., Chen, Y., Hadar, Y., Marchner, H. & Romheld, V. (1991). Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants, Plant Soil , 130 (1–2), pp. 231–241. Beath, O.A., Eppsom, H.F. & Gilbert, G.S. (1937). Selenium

REFERENCES AND LEGAL ACTS ABAGA N.O.Z., DOUSSET S., MBENGUE S., MUNIER-LAMY C. 2014. Is vetiver grass of interest for the remediation of Cu and Cd to protect marketing gardens in Burkina Faso? Chemosphere 113: 2–47. AIBIBU N., LIU Y., ZENG G., WANG X. CHEN B. SONG H., XU L. 2010. Cadmium accumulation in Vetiveria zizanioides and its effects on growth, physiological and biochemical characters. Bioresource Technology 101: 6297–6303. BROOKS R.R. 1998. Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral

-sayed Badr N, El-Khatib A, Abo-El-Kassem A. Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile. Environ Monit Assess. 2012;184:1753-1771. DOI: 10.1007/s10661-011-2076-9. [67] Zimny H. Ekologiczna ocena stanu środowiska. Bioindykacja i biomonitoring. Warszawa: Agencja Reklamowo-Wydawnicza A. Grzegorczyk; 2006. [68] Zhou G, Zhang J, Fu J, Shi J, Jiang G. Biomonitoring: An appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta. 2008;606(2);135-150. DOI:10.1016/j.aca.2007.11.018. [69] Wardencki

:// . G omes M.V.T., S ouza R.R.D., T eles V.S., M endes É.A. 2013. Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland. Chemosphere. Vol. 103 p. 228–233. DOI 10.1016/j.chemosphere.2013.11.071. G onzález O. 2000. Estudio del comportamiento de humedales con flujo subsuperficial horizontal en el tratamiento de aguas residuales [Study of the behaviour of wetlands with horizontal subsurface flow for wastewater treatment]. PhD Thesis. La Habana. CUJAE pp. 120. G onzález O. 2006. Remoción de nitrógeno y fósforo en

References 1. Barbosa B., Boléo S., Sidella S., Costa J., Duarte M. P., Mendes B., Cosentino S., Fernando A. L.: Phytoremediation of heavy metalcontaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L., BioEnergy Research, 8(4) (2015) 1500-1511. 2. Clifton-Brown J., Lewandowski I.: Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance, The New Phytologist, 148(2) (2000) 287-294. 3. Clifton‐Brown J., McCalmont J., Hastings A.: Development of

). Collectanea Botanica 30, 63-78. Xia, H. P., 2004: Ecological rehabilitation and phytoremediation with four grasses in oil shale mined land. Chemosphere 54, 345-353. Zangheri, P., 1976: Flora Italica 1, 909-910. CEDAM, Padova. Zuloaga, F. O., Morrone, O., 2005: Revisión de las especies de Paspalum para América del Sur Austral (Argentina, Bolivia, Sur de Brasil, Chile, Paraguay y Uruguay). Monographs in systematic botany from the Missouri Botanical Garden 102, 1-297. Zuloaga, F. O., Morrone, O., Davidse, G., Filgueiras, T. S., Peterson, P. M., Soreng, R. J., Judziewicz, E

nutrients by castor bean plants grown on an As-enriched nutrient solution, J. Hazard. Mater., 2009, 168: 479-483. 6. Wiszniewska A, Hanus-Fajerska E, Muszynska E, Ciarkowska K. Natural organic amendments for improved phytoremediation of polluted Soils: A Review of Recent Progress. Pedosphere, 2016, 26(1), 1-12. 7. Singh AS, Kumari S, Modi AR, Gajera BB, Narayanan S, Kumar N. Role of conventional and biotechnological approaches in genetic improvement of castor (Ricinus communis L.), Ind. Crops Prod., 2015, 74: 55-62. 8. Cecchi CGS, Zanchi C. Phytoremediation of soil

, London, 1984, 214-219. KADUKOVA, J., KAVULICOVA J.: Phytoremediation and stress. Evaluation of heavy metal-induced stress in plants, New York, Nova Science Publishers, 2010, 134 pp. KÜPPER, H., SPILLER, M., KUPPER, F.C.: Photometric method fort he quantification of chlorophylls and their derivates in complex mixtures: Fitting with Gauss-peak spectra. Anal. Biochem., 286, 2000, 247-256. LEON, A.M., PALMA, J.M., CORPAS, F.J., GOMEZ, M., ROMERO-PUERTAS, M. C., CHATTERJEE, D., MATEOS, R.M., DEL RIO, L.A., SAND ALIO, L.M.: Antioxidative enzymes in cultivars of pepper plants

. Environ. Sci. Pollut. Res ., 22 , 3361–3382. Baker, A. J. M., Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements — a review of their distribution, ecology and phytochemistry. Biorecovery , 1 , 81–126. Baker, N. R. (2006). A possible role for photosystem II in environmental perturbations of photosynthesis. Physiol. Plant ., 81 , 563–570. Blaylock, M. J., Huang, J. W. (2000). Phytoextraction of metals. In: Raskin, I., Ensley, B. D. (eds.). Phytoremediation of Toxic Metals — Using Plants to Clean-up the Environment . Wiley, New