Search Results

1 - 10 of 16,566 items :

Clear All

Consistent with the Hydrodynamic Theory. − Transportation Research, Part B, Vol. 28B, 1994, No 4, 269-287. 5. Daganzo, C. F. A Finite Difference Approximation of the Kinematic Wave Model of Traffic Flow. - Transportation Research, Part B, Vol. 29B,1995, No 4, 261-276. 6. Daganzo, C. F. Requiem for Second-Order Fluid Approximations of Traffic Flow. - Transportation Research, Part B, Vol. 29B, 1995, No 4, 277-286. 7. Drake, J. A Statistical Analyses of Speed Density Hypotheses. Drake, J. S., J. L. Schofer, and A. D. May (1967). - Highway Research Record, Vol. 154, 1967, 53

egophoricity: Grammar, ontology and phylogeny. Lingua, 118 (2), 141-150. Dahl, Ö. & Fraufud, K. (1996). Animacy in grammar and discourse. In T. Fretheim & J.K. Gundel (Eds.), Reference and Referent Accessibility (pp. 47-66). Philadelphia, PA: John Benjamins. Dryer, M.S. (1991). SVO Languages and the OV/VO Typology. Journal of Linguistics, 27 (2), 443-482. Dryer, M.S. (1992). The Greenbergian word order correlations. Language, 68 (1), 81-138. Dryer, M.S. (2005). Order of subject, object, and verb. In M. Haspelmath, M.S. Dryer, D. Gil, & B. Comrie (Eds.), The World Qtlas of

(5) , (2013), 2606-2614. [5] B. K. Lahiri and Dibyendu Banerjee , Generalized relative order of entire functions, Proc. Nat. Acad. Sci. India , 72(A) (IV), (2002), 351-371. [6] B. K. Lahiri and Dibyendu Banerjee , Entire functions of relative order (p,q), Soochow Journal of Mathematics , 31 (4), (2005), 497–513. [7] O. P. Juneja, G. P. Kapoor, and S. K. Bajpai , On the (p,q)-order and lower (p,q)-order of an entire function, J. Reine Angew. Math. , 282 , (1976), 53-67. [8] O. P. Juneja, G. P. Kapoor, and S. K. Bajpai , On the (p,q)-type and lower (p,q)-type of

References Bagley, R. and Calico, R. (1991). Fractional order state equations for the control of viscoelastically damped structures, Journal of Guidance, Control, and Dynamics 14 (2): 304-311. Ben-Israel, A. and Greville, T.N.E. (1974). Generalized Inverses: Theory and Applications , Wiley, New York, NY. Boroujeni, E.A. and Momeni, H.R. (2012). Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems, Signal Processing 92 (10): 2365-2370. Boutayeb, M., Darouach, M. and Rafaralahy, H. (2002). Generalized state

. Eucken, W. (2005). Nationalökonomie wozu? . Stuttgart: Klett-Cotta. Fukuyama, F. (1992). The End of History and the Last Man . New York: Free Press. Fukuyama, F. (2014). Political Order and Political Decay . New York: Farray, Straus and Giroux. Goldschmidt, N. (2006). Wozu Ordnungsethik? Normative Grundlagen der Wettbewerbsordnung. In: Menschenwürdige Ordnung – Beitr¨age zur Tagung 2005 in Tutzing . Halle (Saale): Institut für Wirtschaftsforschung Halle. Grabska, A., Moszyński, M., Pysz, P. (2014). Stanowiony i spontaniczny ład gospodarczy w procesie transformacji

References [1] R. M. Adin and Y. Roichman, Equidistribution and sign-balance on 321-avoiding permuta- tions, Sém. Lothar. Combin., 51 (2004) Article B51d. [2] E. Barcucci, A. Bernini, L. Ferrari and M. Poneti, A distributive lattice structure con- necting Dyck paths, noncrossing partitions and 312-avoiding permutations, Order, 22 (2005) 311-328. [3] E. Barcucci, A. Del Lungo, E. Pergola and R. Pinzani, ECO: a methodology for the Enumeration of Combinatorial Objects, J. Difference Equ. Appl., 5 (1999) 435-490. [4] M. Bóna, Combinatorics of Permutations, Discrete

References [1] BENJAMIN, A.-QUINN, J.: The Fibonacci numbers - Exposed more discretely, Math. Mag. 76 (2003), 182-192. [2] HALTON, J. H.: On the divisibility properties of Fibonacci numbers, Fibonacci Quart. 4 (1966), 217-240. [3] KALMAN, D.-MENA, R.: The Fibonacci numbers - exposed, Math. Mag. 76 (2003), 167-181. [4] KOSHY, T.: Fibonacci and Lucas Numbers with Applications. Wiley, New York, 2001. [5] MARQUES, D.: On integer numbers with locally smallest order of appearance in the Fibonacci sequence, Internat. J. Math. Math. Sci., Article ID 407643 (2011), 4

References Abate, M.; Patrizio, G. - Finsler Metrics-A Global Approach. With Applications to Geometric Function Theory , Lecture Notes in Mathematics, 1591, Springer-Verlag, Berlin, 1994. Aikou, T. - Finsler geometry on complex vector bundles. A sampler of Riemann-Finsler geometry , 83-105, Math. Sci. Res. Inst. Publ., 50, Cambridge Univ. Press, Cambridge, 2004. Bucătaru, I. - Characterizations of nonlinear connection in higher order geometry , Balkan J. Geom. Appl., 2 (1997), 13-22. Bao, D.; Chern, S.-S.; Shen, Z. - An Introduction to Riemann

References [1] AGARWAL, R. P.-GRACE, S. R.: Oscillation theorems for certain neutral functional differential equations, Comput. Math. Appl. 38 (1999), 1-11. [2] BACUL´IKOV´A, B.: Oscillation criteria for second order nonlinear differential equations, Arch. Math. (Brno) 42 (2006), 141-149. [3] BACUL´IKOV´A, B.: Oscillation theorems for third order neutral differential equations, Tatra Mt. Math. Publ., 2011 (to apear). [4] BACUL´IKOV´A, B.-LACKOV´A, D.: Oscillation criteria for second order retarded dif- ferential equations, Stud. Univ. ˇ Zilina, Math. Ser. 20

, Circular and Hyperbolic Quaternions, Octonions and Sedenions, Appl. Math. Comput. , 28 , (1988), 47–72. [7] P. Catarino, The modified Pell and the modified k -Pell quaternions and octonions, Adv. Appl. Clifford Algebras , 26 , (2016), 577–590. [8] G. Cerda-Morales, Identities for Third Order Jacobsthal Quaternions, Advances in Applied Clifford Algebras , 27(2) , (2017), 1043–1053. [9] G. Cerda-Morales, On a Generalization of Tribonacci Quaternions, Mediterranean Journal of Mathematics , 14: 239 (2017), 1–12. [10] Ch. K. Cook and M. R. Bacon, Some identities for