Search Results

1 - 10 of 241 items :

  • "obliquity" x
Clear All

REFERENCES [1]. ***, “ UIC Code 773-4 R ”, International Union of Railways, F-75015 Paris, 1997 [2]. ***, EN 1992-1-1:2004, “ Eurocode 2: Design of concrete structures - Part 1: General rules and rules for buildings ”, 2004 [3]. ***, EN 1994-2:2005, “ Eurocode 4: Design of composite steel and concrete structures – Part 2: General rules and rules for bridges ”, 2005 [4]. ***, “ Element Reference Manual ”, LUSAS Finit Element Analysis, Version 15.0 [5]. STĂNESCU R.M., “ Study of influence of the track curvature and supports obliquity at railway bridge structures

LITERATURE Gerke, M., & Nyaruhuma, A. (2009). Incorporating scene constraints into the triangulation of airborne oblique images, ISPRS Int. Archives of Photogram., Remote Sens. & Spatial Inf. Sci., 38, 4-7. Gerke, M., Nex, F., Remondino, F., Jacobsen, K., Kremerd, J., Karel, W., Huf, H., & Ostrowski, W. (2016). Orientation of oblique airborne image sets - Experiences from the ISPRS/EuroSDR benchmark on multi-platform photogrammetry, ISPRS Int. Photogram., Remote Sens. & Spatial Inf. Sci., 41, 185-191. Glira, P., Pfeifer, N., & Mandlburger, G., (2019). Hybrid

.P. (1994): Oblique water wave diffraction by thin vertical barriers in water of uniform finite depth. – Appl. Ocean Res., vol.16, pp.195-203. [6] Roseau M. (1976): Asymptotic wave theory. – North Holland, pp.311-347. [7] Kreisel G. (1949): Surface waves. – Quart. Appl. Math., vol.7, pp.21-44. [8] Fitz-Gerald G.F. (1976): The reflection of plane gravity waves traveling in water of variable depth. – Phil. Trans. Roy. Soc. Lond., vol.34, pp.49-89. [9] Hamilton J. (1977): Differential equations for long period gravity waves on fluid of rapidly varying depth. – J

REFERENCES 1. Abbasi A., Ghassemi H., Fadavie M. (2018): Hydrodynamic Characteristic of the Marine Propeller in the Oblique Flow with Various Current Angle by CFD Solver . American Journal of Marine Science, 6(1), 25–29. 2. Atsavapranee P. (2010): Steady-turning experiments and RANS simulations on a surface combatant hull form (Model# 5617) . 28th Symposium on Naval Hydrodynamics, Pasadena, 2010. 3. Broglia R., Dubbioso G., Durante D., Di Mascio A. (2013): Simulation of turning circle by CFD: Analysis of different propeller models and their effect on

.P. (1994): Oblique water wave diffraction by thin vertical barriers in water of uniform finite depth . – Appl. Ocean Res., vol.16, pp.195-203. [6] Roseau M. (1976): Asymptotic wave theory . – North Holland, pp.311-347. [7] Kreisel G. (1949): Surface waves . – Quart. Appl. Math., vol.7, pp.21-44. [8] Fitz-Gerald G.F. (1976): The reflection of plane gravity waves traveling in water of variable depth . – Phil. Trans. Roy. Soc. Lond., vol.34, pp.49-89. [9] Hamilton J. (1977): Differential equations for long period gravity waves on fluid of rapidly varying depth . – J

. Sadybekov and B. T. Torebek, On a class of nonlocal boundary value problems for the Laplace operator in a disk, AIP Conference Proceedings 1789 (2016), 1-6. [5] A. V. Bitsadze, A special case of the problem of the oblique derivative for harmonic functions in three-dimensional domains, Dokl. Akad. Nauk SSSR 155(4) (1964), 730-731. [6] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order , 2nd ed., Springer-Verlag, Berlin, 1983.

References [1] G.P. ZOU, I. YELLOWLEY, R.J. SEETHALER: A new approach to the modeling of oblique cutting process. Int. J. Mach. Tools Manuf. , 49 (2009), 701-707. [2] T.J. DROZDA, CH. WICK: Tool and manufacturing engineers handbook. Vol. I, Machining. SME Technical Divisions, Dearborn 1983. [3] W. GRZESIK: Stereometric and kinematic problems occurring during cutting with single-edged tools. Int. J. Mach. Tools Manuf. , 26 (1986), 443-457. [4] W. GRZESIK: Advanced machining processes of metallic materials. Elsevier, Amsterdam 2008. [5] G. BOOTHROYD, W

REFERENCES [1] BARRETT, J. W.—ELLIOTT, CH. M.: Fixed mesh finite element approximations to a free boundary problem for an elliptic equation with an oblique derivative boundary condition , Compt. Math. Appl. 11 (1985), no. 4, 335–345. [2] BAUER, F.: An Alternative Approach to the Oblique Derivative Problem in Potential Theory . In: PhD Thesis, Geomathematics Group, Department of Mathematics, University of Kaiserslautern, Shaker Verlag, Aachen, Germany, 2004. [3] BECKER, J. J.—SANDWELL, D. T.—SMITH, W. H. F.—BRAUD, J.—BINDER, B.— DEPNER, J.—FABRE, D.—FACTOR, J

anterior cruciate ligaments. J ComputAssist Tomogr 1996; 20: 322-7. 14. Niitsu M, Ikeda K, Itai Y. Slightly flexed knee position within a standard knee coil: MR delineation of the anterior cruciate ligament . Eur Radiol 1998; 8: 113-5. 15. Pereira ER, Ryu KN, Ahn JM, Kayser F, Bielecki D, Resnick D. Evaluation of the anterior cruciate ligament of the knee: comparison between partial flexion true sagittal and extension sagittal oblique positions during MR imaging. Clin Radiol 1998; 53: 574-8. 16. Katahira K, Yamashita Y, Takahashi M, Otsuka N, Koga Y, Fukumoto T

-dimensional ventilating entry of surface-piercing hydrofoils with effects of gravity , J. Fluid Mech. 658, 2010, pp. 383–408. 36. Vinayan V. A Boundary Element Method for the Strongly Nonlinear Analysis of Ventilating Water-entry and Wave-body Interaction Problems . PhD thesis, Ocean Engineering Group, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX, USA, 2009. 37. Wang D.P.: Water entry and exit of a fully ventilated foil , J. Ship Res. 21 (1), 1977, pp. 44–68. 38. Wang D.P.: Oblique water entry and exit of a fully ventilated foil , J. Ship