Search Results

1 - 10 of 17,583 items :

Clear All

.: Maximal unramified 3-extensions of imaginary quadratic fields and SL2Z3, J. Number Theory 124 (2007), 159-166. [6] BESCHE, H. U.-EICK, B.-O’BRIEN, E. A.: A millennium project: constructing small groups, Int. J. Algebra Comput. 12 (2002), 623-644. [7] BESCHE, H. U.-EICK, B.-O’BRIEN, E. A.: The SmallGroups Library - a Library of Groups of Small Order, 2005, an accepted and refereed GAP package, available also in MAGMA. [8] BOSMA, W.-CANNON, J.-PLAYOUST, C.: The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265. [9] BOSMA, W.-CANNON, J. J

References [1] M. Alkhateeb and A. Kohl, Upper bounds on the b-chromatic number and results for restricted graph classes, Discuss. Math. Graph Theory 31 (2011) 709-735. doi:10.7151/dmgt.1575 [2] D. Barth, J. Cohen and T. Faik, Non approximality and non-continuity of the fall coloring problem, LRI Research report, Paris-Sud University 1402 (2005). [3] S. Cabello and M. Jakovac, On the b-chromatic number of regular graphs, Discrete Appl. Math. 159 (2011) 1303-1310. doi:10.1016/j.dam.2011.04.028 [4] E.J. Cockayne, Domination in undirected graphs-a survey, in: Theory

R eferences [1] D. Bokal, G. Fijavz, M. Juvan, P.M. Kayll and B. Mohar, The circular chromatic number of a digraph , J. Graph Theory 46 (2004) 227–224. doi:10.1002/jgt.20003 [2] G. Chartrand and H.V. Kronk, The point-arboricity of planar graphs , J. London Math. Soc. 44 (1969) 612–616. doi:10.1112/jlms/s1-44.1.612 [3] G. Cornuéjols, Combinatorial Optimization: Packing and Covering (SIAM, Philadelphia, 2001). doi:10.1137/1.9780898717105 [4] T. Feder, P. Hell and B. Mohar, Acyclic homomorphisms and circular colorings of digraphs , SIAM J. Discrete Math. 17

References [1] R. Bhatia, Matrix Analysis (Graduate Text in Mathematics, 169, Springer Verlag, New York, 1997). doi:10.1007/978-1-4612-0653-8 [2] F.R.K. Chung, Spectral Graph Theory (CBMS Number 92, 1997). [3] A.J. Hoffman, On eigenvalues and colourings of graphs, in: Graph Theory and its Applications, Academic Press, New York (1970) 79-91. [4] L. Yu. Kolotilina, Inequalities for the extreme eigenvalues of block-partitioned Hermitian matrices with applications to spectral graph theory, J. Math. Sci. 176 (2011) 44-56 (translation of the paper originally published

References [1] G. Chartrand, F. Okamoto, C.W. Rasmussen, and P. Zhang, The set chromatic number of a graph, Discuss. Math. Graph Theory 29 (2009) 545-561. doi:10.7151/dmgt.1463 [2] G. Chartrand, F. Okamoto, and P. Zhang, Neighbor-distinguishing vertex colorings of graphs, J. Combin. Math. Combin. Comput. 74 (2010) 223-251. [3] R. Gera, F. Okamoto, C. Rasmussen, and P. Zhang, Set colorings in perfect graphs, Math. Bohem. 136 (2011) 61-68.

References 1] M. Behrisch, Component evolution in random intersection graphs, Electron. J. Com- bin. 14 (2007) R17. [2] M. Behrisch, A. Taraz and M. Ueckerdt, Coloring random intersection graphs and complex networks, SIAM J. Discrete Math. 23 (2009) 288-299. doi: 10.1137/050647153 [3] M. Bloznelis, Component evolution in general random intersection graphs, SIAM J. Discrete Math. 24 (2010) 639-654. doi: 10.1137/080713756 [4] B. Bollobás, The chromatic number of random graphs, Combinatorica 8 (1988) 49-55. doi: 10.1007/BF02122551 [5] B. Bollobas and P. Erdős

References [1] H. Aram, S.M. Sheikholeslami and O. Favaron, Domination subdivision number of trees, Discrete Math. 309 (2009) 622-628. doi:10.1016/j.disc.2007.12.085 [2] S. Benecke and C.M. Mynhardt, Trees with domination subdivision number one, Australas. J. Combin. 42 (2008) 201-209. [3] M. Dettlaff, J. Raczek and J. Topp, Domination subdivision and multisubdivision numbers of graphs, submitted. [4] O. Favaron, H. Karami and S.M. Sheikholeslami, Disproof of a conjecture on the subdivision domination number of a graph, Graphs Combin. 24 (2008) 309-312. doi:10

References [1] M.O. Albertson and D.M. Berman, The acyclic chromatic number , Congr. Numer. 17 (1976) 51-69. [2] S. Bau and L.W. Beineke, The decycling number of graphs, Australas. J. Combin. 25 (2002) 285-298. [3] L.W. Beineke and R.C. Vandell, Decycling graphs, J. Graph Theory 25 (1997) 59-77. doi: 10.1002/(SICI)1097-0118(199705)25:1$h$59::AID-JGT4$i$3.0.CO;2-H [4] R. Diestel, Graph Theory (Springer Verlag, New York, 1997). doi: 10.4171/OWR/2007/16 [5] P. Erd˝os, Maximum induced trees in graphs, J. Combin. Theory Ser. B 41 (1986) 61-79. doi: 10

References [1] T.Y. Chang, Domination number of grid graphs, Ph.D. Thesis, (Department of Mathematics, University of South Florida, 1992). [2] T.Y. Chang and W.E. Clark, The domination numbers of the 5 × n and 6 × n grid graphs, J. Graph Theory 17 (1993) 81-108. doi:10.1002/jgt.3190170110 [3] M.H. El-Zahar and R.S. Shaheen, On the domination number of the product of two cycles, Ars Combin. 84 (2007) 51-64. [4] M.H. El-Zahar and R.S. Shaheen, The domination number of C8 □Cn and C9 □Cn, J. Egyptian Math. Soc. 7 (1999) 151-166. [5] D. Gon¸calves, A. Pinlou, M. Rao

References [1] L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J., 15 (1948) 987-1000. [2] L. Carlitz, Generalized Stirling numbers, Combinatorial Analysis Notes, Duke University, (1968) 8-15. [3] W. Chu and C. Wei, Set partitions with restrictions, Discrete Math., 308 (2008) 3163-3168. [4] H. W. Gould and J. Quaintance, Implications of Spivey's Bell number formula, J. Integer Seq., 11 (2008) Art. 08.3.7. [5] T. Mansour, Combinatorics of Set Partitions, Chapman & Hall/CRC, Boca Raton, Florida, 2012. [6] T. Mansour and A. O. Munagi, Set partitions with