Search Results

1 - 10 of 1,160 items :

  • "nanoparticles" x
Clear All

The word “nano” is derived from the Greek word “nânos” meaning dwarf [ 1 ]. The prefix “nano-” has had ever-increasing applications to the spectrum of knowledge [ 2 ]. Nanoscale particles are composed of natural, synthetic or semisynthetic materials such as proteins, metals, and plant secondary metabolites. Nanospheres are nanometric solid-core spherical particulates often containing a drug embedded within the sphere or absorbed onto its surface [ 3 ]. Engineered nanoparticles are intentionally designed and have been created with physical properties tailored to

References 1. Xu, S., Habib, A. H., Pickel, A. D., & McHenry, M. E. (2015). Magnetic nanoparticle-based solder composites for electronic packaging applications. Prog. Mater. Sci., 67, 95-160. <>. 2. Zahn, M. (2001). Magnetic fluid and nanoparticle applications to nanotechnology. J. Nanopart. Res., 3, 73-78. 3. Tartaj, P., Puerto Morales, M., Veintemillas-Verdaguer, S., Gonzalez-Carreno, T., & Serna, C. J. (2003). The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D-Appl. Phys., 36, R

References Ahmad A., Ranjan S., Zhang W., Zou J., Pyykkö I., Kinnunen P. (2015). Novel endosomolytic peptides for enhancing gene delivery in nanoparticles. Biochim. Biophys., 1848: 544-553. An H., Jin B. (2012). Prospects of nanoparticle-DNAbinding and its implications in medical biotechnology. Biotechnol. Adv., 30: 1721-1732. Austin L., Mackey M., Dreaden E., El-Sayed M. (2014). The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch. Toxicol., 88: 1391-1417. Bahrami A

–433. DOI: 10.1007/s12274-014-0408-0. 8. Muszynski, R., Seger, B. & Kamat, P.V. (2008). Decorating Graphene Sheets with Gold Nanoparticles. J. Phys. Chem. C 112, 5263–5266. DOI: 10.1021/jp800977b. 9. Zhu, J., Zhu, T., Zhou, X, Zhang, Y., Lou, X.W., Chen, X., Chen, H., Zhang, H., Hng, H.H., Ma, J. &Yan, Q. (2011). Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale 3, 1084–1089. DOI: 10.1039/C0NR00744G. 10. Ling, Q., Yang, M., Li, C.S. & Zhang, A.M. (2015). Preparation of Monolayered Ce

nanocoating refractory to Candida albicans biofilm development. Biointerphases, 8:12. Basim E., Basim H., Ozcan M., 2006. Antibacterial activities of Turkish pollen and propolis extracts against plant bacterial pathogens. Journal of Food Engineering, 77: 992 - 996. Bolocan A., Mihăiescu D., Andronescu E., Voicu G., Grumezescu A., Ficai A., Vasile B., Bleotu C., Chifiriuc C., Pop C., 2015. Biocompatible hydrodispersible magnetite nanoparticles used as antibiotic drug carriers. Romanian Journal of Morphology and Embryology, 56 (2): 365-370. Chifiriuc C., Grumezescu V

nanoparticle aggregates of gold, Adv. Mat. 21 (2009) 2309–2313; 6. A. D. McFarland, C. L. Haynes, C. A. Mirkin, R. P. V. Duyne and H. A. Godwin, Color my nanoworld, J. Chem. Ed . 81 (2004) 544A – 544B; 7. O. Stern and M. Volmer, Decay of fluorescence, J. Röntgen Soc. 15 (1919) 133–133; 8. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, ICH Harmonised Tripartite Guideline, Validation

. Mat. Sci. 23 (2010), 164. [10] Dallas P., Tucek J., Jancik D., Kolar M., Panacek A., Zboril R., Adv. Funct. Mater. 20 (2010), 2347. [11] Guskos N., Zolnierkiewicz G., Typek J., Guskos A., Berczynski P., Petridis D., Centr. Eur. J. Phys. 90 (2012), 166–171. [12] Guskos N. et al., J. Appl. Phys. 93 (2003), 9834. [13] Kliava J., Electron Magnetic Resonance of Nanoparticles: Superparamagnetic Resonance, in Magnetic Nanoparticles (ed S. P. Gubin

Opinion in Colloid & Interface Science 13, 134–140. DOI: 10.1016/j.cocis.2007.11.009. 10. Dong, X., Xu, J., Cao, C., Sun, D. & Jiang, X. (2010). Aqueous foam stabilized by hydrophobically modified silica particles and liquid paraffin droplets. Colloids and Surfaces A: Physicochem. Eng. Aspects 353, 181–188. DOI: 10.1016/j. colsurfa.2009.11.010. 11. Hunter, T., Wanless, E., Jameson, G. &. Pugh, R. (2009). Non-ionic surfactant interactions with hydrophobic nanoparticles: Impact on foam stability. Colloids and Surfaces A: Physicochem. Eng. Aspects 347, 81–89. DOI: 10

References BANKURA, K.P., MAITY, D., MOLLICK, M.M.R., MONDAL, D., BHOWMICK, B., BAIN, M.K., CHAKRABORTY, A., SARKAR, J., ACHARYA, K., CHATTOPADHYAY, D.: Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium. Carbohydr. Polym., 89, 2012, 1159- 1165 CASTRO, L., BLÁZQUEZ, M.L., GONZÁLEZ, F., MUÑOZ, J.A., BALLESTER, A.: Extracellular biosynthesis of gold nanoparticles using sugar beet pulp. Chem. Eng. J., 164, 2010, 92-97. CASTRO, L., BLÁZQUEZ, M.L., MUÑOZ, J.A., GONZÁLEZ, F., BALLESTER, A.: Biological

R eferences [1] S. Horikoshi and N. Serpone, Microwaves Nanoparticle Synthesis: Fundamentals and Applications , first ed., Wiley-VCH Verlag GmbH & Co.KGaA, 2013. [2] Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, W. And and Yang, “New Gold Nanostructures for Sensor Applications: A Review”, Materials 7 , 2014, pp. 5169-5201. [3] M. C. Daniel and D. Astruc, “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis and Nanotechnology”, Chem. Rev. 104