Search Results

1 - 10 of 109 items :

  • "nanofluid" x
Clear All

References 1. Alchaar S., Vesseur P., Bilgen E.(1995), Effect of a magnetic field on the onset of convection in a porous medium, Heat and Mass Transfers, 30, 259-267. 2. Alloui Z. , Vasseur P., Reggio M. (2010), Natural convection of nanofluids in a shallow cavity heated from below, International Journal of Thermal Science, 50(3), 385-393. 3. Bahloul A., Boutana N., Vasseur P. (2003), Double-diffusive and Soret-induced convection in a shallow horizontal porous layer, J. Fluid Mech., 491, 325-352. 4. Buongiorno J.(2006), Convective Transport in Nanofluids

R eferences [1] Nagarajan P. K., Subramani J., Suyambazhahan S., Sathyamurthy R. Nanofluids for solar collector applications: A review. Energy Procedia 2014:61:2416–2434. https://doi.org/10.1016/j.egypro.2014.12.017 [2] Javadi F. S., Saidur R., Kamalisarvestani M. Investigating performance improvement of solar collectors by using nanofluids. Reneable and Sustainable. Energy Reviews 2013:28:232–245. https://doi.org/10.1016/j.rser.2013.06.053 [3] Kasaeian A., Eshghi A. T., Sameti M. A review on the applications of nanofluids in solar energy systems

., Li S. and Eastman J.A. (1999): Measuring thermal conductivity of fluids containing oxide nanoparticles. – Journal of Heat Transfer, vol.121, No.2, pp.280-289. [5] Wang X., Xu. X. and Choi S. (1999): Thermal conductivity of nanoparticle-fluid mixture. – Journal of Thermophysics and Heat Transfer, vol.13, pp.474–480. [6] Xuan Y. and Li Q. (2000): Heat transfer enhancement of nanofluids. – International Journal of Heat and Fluid Flow, vol.21, No.1, pp.58–64. [7] Yu W. and Choi S.U.S. (2003): The role of interfacial layers in the enhanced thermal conductivity of

References Alex S.M., Prabhamani R.P. and Vankatakrishan K.S. (2001): Variable gravity effects on thermal instability in a porous medium with internal heat source and inclined temperature gradient . - Fluid Dynamics Research, vol.29, pp.1-6. Alloui Z., Vasseur P. and Reggio M. (2010): Natural convection of nanofluids in a shallow cavity heated from below . - International Journal of Thermal Science, online xxx, pp.1-9. Buongiorno J. (2006): Convective transport in nanofluids . - ASME Journal of Heat Transfer, vol.128, pp.240-250. Chand R. (2011): Effect of

References [1] Choi S.U.S. (1995): Enhancing thermal conductivity of fluids with nanoparticles . − Dev. Appl. Non-Newton Flows, vol.66, 99. [2] Sarkar A., Das K. and Kundu P.K. (2016): On the onset of bioconvection in nanofluid containing gyrotactic microorganisms and nanoparticles saturating a non-Darcian porous medium . − J. Mol. Liq., vol.223, pp.725-733. [3] Raju C.S.K. and Sandeep N. (2017): Unsteady Casson nanofluid flow over a rotating cone in a rotating frame filled with ferrous nanoparticles: A numerical study . − J. Magnetism and Magnetic Materials

plates . – Meccanica, vol.47, pp.1581-1589. [7] Choi S.U.S. (1995): Enhancing thermal conductivity of fluids with nanoparticles . – Devlopment and Applications of Non-Newtonian Flows, vol.66, pp.99-105. [8] Choi S.U.S., Zhang Z.G., Yu W., Lockwood F.E. and Grulke E.A. (2001): Anomalously thermal conductivity enhancement in nanotube suspensions . – Applied Physics Letters, vol.79, pp.2252-2254. [9] Buongiorno J. (2006): Convective transport in nanofluids . – ASME Journal of Heat Transfer, vol.128, pp.240-250. [10] Kuznetsov A.J. and Nield N.D. (2010): Natural

References [1] Seddeek M.A., Afify A.A. and Al-Hanaya A.M. (2009): Similarity Solutions for a Steady MHD Falkner-Skan flow and heat transfer over a wedge considering the effects of variable viscosity and thermal conductivity . – Applications and Applied Mathematics, vol.4, pp.303-313. [2] Michael M.J. and Boyd D.I. (2010): Falkner-Skan flow over a wedge with slip boundary conditions . – Journal of Thermo Physics and Heat Transfer, vol.24, pp.263-270. [3] Yacob A.N., Ishak A. and Pop I. (2011): Falkner-Skan problem for a static or moving wedge in nanofluids

References [1] Mahalakshmi, Thangavelu, Nagarajan Nithyadevi, Hakan F. Oztop and Nidal Abu-Hamdeh (2018): MHD mixed convective heat transfer in a lid-driven enclosure filled with Ag-water nanofluid with center heater . − International Journal of Mechanical Sciences, vol.142, pp.407-419. [2] Nayak M.K. (2017): MHD 3D flow and heat transfer analysis of nanofluid by shrinking surface inspired by thermal radiation and viscous dissipation . − International Journal of Mechanical Sciences, vol.124, pp.185-193. [3] Hayat, Tasawar, Maria Imtiaz and Ahmed Alsaedi (2015

References [1] S. U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles , In: D.A. Siginer, H.P. Wang (Eds.), Developments and Applications of Non-Newtonian Flows, ASME FED , 231 /MD- 66 (1995), 99–105. [2] Pooya M. Rad, C. Aghanajafi, The Effect of Thermal Radiation on Nanofluid Cooled Microchannels, J. Fusion Energ. , 28 (2009), 91–100. [3] A. A. Afify, M. A. Seddeek, M. A. A. Bbazid, Radiation effects on Falkner-Skan flow of a nanofluid past a wedge in the present of non-uniform heat source/sink, Meccanica , 2011, Submitted. [4] K

and viscous flows .− In: Comput Fluid Dyn. Berlin Heidelberg: Springer-Verlag. [4] Hayat T. and Waqas M. (2014): Effects of Joule heating and thermophoresis on stretched flow with convective boundary conditions .− Scientia Iranica. Transaction B, Mechanical Engineering, vol.21, pp.682-692. [5] Rana P. and Bhargava R. (2011): Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: A numerical study. − https://doi.org/10.1016/j.cnsns.2011.05.009 . [6] Sheikholeslami M. (2016): CVFEM for magnetic nanofluid convective heat transfer in a porous