Search Results

1 - 10 of 79 items :

  • "molecular systematics" x
Clear All


Among the ten species of the Nebria genus, present in the Romanian Carpathians, seven are the object of morphological, geographical distribution and molecular biological studies: Nebria (Eunebria) jockischi hoepfneri Dejean, 1826, Nebria (Boreonebria) heegeri Dejean, 1826, Nebria (Boreonebria) gyllenhali Schönherr, 1806, Nebria (Alpaeonebria) reichei Dejean, 1826, Nebria (Alpaeonebria) reitteri Rybinsky, 1902, Nebria (Alpaeonebria) bissenica Bielz, 1887, Nebria (Nebria) transsylvanica Germar, 1824, Nebria (Nebria) femoralis alpigrada Csiki 1905), collected from the Maramureș Mt., Rodnei Mt., Parâng Mt., Rarău Mt., Făgăraș Mt., Cozia Mt., Bucegi Mt., Retezat Mt., Muntele Mic and Semenic Mt. The morphological description exploits the body size, the elytral reflection, the colour of the appendages and the legs, the shape of the first antennary segment, its chaetotaxy and that of the submentum, the shape and size of the elytra and alae, the position of the bristles on the ventrites 4-5-6. The shape of the first antennary segment and its chaetotaxy appear as more discriminating criteria, but supposes the integrity of the bristles. The identification is sometimes malaise due to the fragility of the bristles (first antennomere, submentum). Nebria (Alpaeonebria) reichei Dejean, 1826 has a variable chaetotaxy of antenna, 1 to 3 bristles on the first antennomere. The individuals with yellow appendages and legs provided with 2 unequal length can be confused with transsylvanica. They are distinguished by the triangular shape of the aileron (S-shaped in transsylvanica). Molecular data are given for the first time on Carpathian Nebria. The mitochondrial markers (COI I, cyt b) clearly identify the species studied and confirm that alpigrada does not belong to transsylvanica. The results show an infraspecific variability of geographic and altitudinal origin in jockischi one of the most widespread species (gyllenhali, jockischi, reichei).


Closely related lichen-forming fungal species circumscribed using phenotypic traits (morphospecies) do not always align well with phylogenetic inferences based on molecular data. Using multilocus data obtained from a worldwide sampling, we inferred phylogenetic relationships among five currently accepted morphospecies of Peltigera section Peltidea (P. aphthosa group). Monophyletic circumscription of all currently recognized morphospecies (P. britannica, P. chionophila, P. frippii and P. malacea) except P. aphthosa, which contained P. britannica, was confirmed with high bootstrap support. Following their re-delimitation using bGMYC and Structurama, BPP validated 14 putative species including nine previously unrecognized potential species (five within P. malacea, five within P. aphthosa, and two within P. britannica). Because none of the undescribed potential species are corroborated morphologically, chemically, geographically or ecologically, we concluded that these monophyletic entities represent intraspecific phylogenetic structure, and, therefore, should not be recognized as new species. Cyanobionts associated with Peltidea mycobionts (51 individuals) represented 22 unique rbcLX haplotypes from five phylogroups in Clade II subclades 2 and 3. With rare exceptions, Nostoc taxa involved in trimembered and bimembered associations are phylogenetically closely related (subclade 2) or identical, suggesting a mostly shared cyanobiont pool with infrequent switches. Based on a broad geographical sampling, we confirm a high specificity of Nostoc subclade 2 with their mycobionts, including a mutualistically exclusive association between phylogroup III and specific lineages of P. malacea.

References Dodson C. H. 2003. Why are there so many orchid species? Lankesteriana 7: 99-103. Nauray Huari W. & Galán de Mera A. 2008. Ten new species of Telipogon (Orchidaceae, Oncidiinae) from southern Peru. Annales del Jardín Botánico de Madrid 65(1): 73-75. Schweinfurth C. 1961. Orchids of Peru. Fieldiana, Bot. 30(4): 946-958. Szlachetko D. L. 1995. Systema Orchidalium. Fragm. Flor. Geobot. Suppl. 3: 1-152. Szlachetko D. L. 2003. Gynostemia Orchidalium III. Acta Bot. Fenn. 176: 1-311. Williams N. H., Whitten W. M. & Dressler R. L. 2005. Molecular systematics

References Allen, P. M. (1998). Dynamic models of evolving systems. System Dynamics Review, 4: 109-130. Caterino, M. S., Cho, S., and Sperling, F. A. H. 2000. The Current State of Insect Molecular Systematics: A Thriving Tower of Babel. Annual Review of Entomolog y, 45: 1-54. Coase, R. H. (1937). The Nature of the Firm. Economica, 4(16), 386-405. Grant, R. M. 1996. Toward a Knowledge-Based Theory of the Firm. Strategic Management Journal, 17:109-122. Hannan, M. T., and Freeman, J. 1977. The Population Ecology of Organizations. The American Journal of Sociolog y

; Orchidaceae) with comments on Hofmeisterella . Lindleyana 16(3): 157-217. W illiams N. H., W hitten W. M. & D ressler R. L. 2005. Molecular systematics of Telipogo n (Orchidaceae: Oncidiinae) and its allies: nuclear and plastid DNA sequence data. Lankesteriana 5: 163-184.

References Anonymus (1994): Zajímavé nálezy. - Bryonora, 14:20-21. Bridel A. (1819): Methodus nova Muscorum ad naturae normam melius instituta. - Gothae, 136 pp. Goffinet B. & Buck W.R. 2004. Systematics of Bryophyta (Mosses): from molecules to a revised classification. In: Gof f inet B., Hol lowel l V. & Magi l l R. [eds.]: Molecular systematics of Bryophytes. − Monogr. Syst. Bot. Missouri Bot. Garden 98: 150-167. Hallingbäck T. (2002): Globally widespread bryophytes, but rare in Europe. − Portugaliae Acta Biol., 20: 11-24. Hradílek Z. (2004): Anacamptodon

. – C. Hölzinger, Ludwigsburg (in German) Rockenbauch, D. 2002. Der Wanderfalke in Deutschland und umliegenden Gebieten [Peregrine Falcons in Germany and neighboring countries]. Bd 2. – C. Hölzinger, Ludwigsburg (in German) Seibold, I., Helbig, A. & Wink, M. 1993. Molecular systematics of falcons (family Falconidae). – Naturwissenschaften 80: 87–90. Sibley, C. G. & Monroe, B. L. 1990. Distribution and Taxonomy of Birds of the World. – Yale University Press, New Haven & London Storch, V., Welsch, U. & Wink, M. 2013. Evolutionsbiologie. 3 rd ed. – Springer

References [1]. Okpekon, T.; Yolou, S.; Gleye, C.; Roblot, F.; Loiseau, P.; Bories, C.; Grellier, F.; Frappier, F.; Laurens, A.; Hocquemiller, R., Antiparasitic activities of medicinal plants used in Ivory Coast, Journal of Ethnopharmacology , 2014 , 90 , 91-97. [2]. Downie, S.R.; Watson, M.F.; Spalik, K.; Katrz-Downie.; D.S., Molecular systematic of old world 2. Apioideae (Apiaceae): Relationships among some members of tribe Peucedaneae sensu lato, the placement of several island-endemic species, & resolution within the apioid superclade, Can. J. Bot

. Nordmann, 1832) Dubois, 1936 (Trematoda, Diplostomatidae). Z. Parasitenkd., 24: 169–248 [12] Dönges, J. (1969): Entwicklungs- und lebensdauer von metacercariaen. Z. Parasitenkd., 31: 340–366 [13] Galazzo, D. E., Dayanandan, S., Marcogliese, D. J., Mclaughlin, J. D. (2002): Molecular systematics of some North American species of Diplostomum (Digenea) based on rDNA-sequence data and comparisons with European congeners. Can. J. Zool., 30: 2207–2217. DOI: 10.1139/Z02-198 [14] Ghatani, S., Shylla, J. A

., Hardman, L. M., Hardman, M., Rausch, R. L., Henttonen, H. (2008): Molecular systematics of the Holarctic Anoplocephaloides variabilis (Douthitt, 1915) complex, with the proposal of Microcephaloides n. g. (Cestoda: Anoplocephalidae). Syst. Parasitol., 70: 15–26 [15] Haukisalmi, V., Henttonen, H. (2000): Description and morphometric variability of Paranoplocephala serrata n. sp. (Cestoda: Anoplocephalidae) in collared lemmings (Dicrostonyx spp., Arvicolinae) from Arctic Siberia and North America. Syst. Parasitol., 45: 219