Search Results

1 - 10 of 4,633 items :

Clear All

References Amoruso MA, Witz G, Goldstein BD (1981) Enhancement of rat and human phagocyte superoxide anion radical production by cadmium in vitro . Toxicol Lett   10 (2-3): 133-138. Belayeva EA, Glazunov VV, Korotkov SM (2004) Cd 2+ versus Ca 2+ -produced mitochondrial membrane permeabilization proposed direct participation of respiratory complex I and III. Chemico-Biol Interact   150 (3): 253-270. Desoize B (2003) Metals and metal compounds in carcinogenesis. In vivo   17 (6): 529-539. Li M, Xia T, Jiang ChS, Li LJ, Fu JL, Zho ZC (2003) Cadmium directly

-exposed Chlamydomonas reinhardtii . Plant Cell Environ. 34: 2071-2082. D resler S., H anaka , A., B ednarek , W. & M aksymiec W. 2014. Accumulation of low-molecular-weight organic acids in roots and leaf segments of Zea mays plants treated with cadmium and copper. Acta Physiol. Plant. 36: 1565-1575. E l -N aggar A. H. & E l -S heekh M. M. 1998. Abolishing cadmium toxicity in Chlorella vulgaris by ascorbic acid, calcium, glucose and reduced glutathione. Environ. Pollut. 101: 169-174. F argašová A. 2012. Physiological parameters utilization for metals ecotoxicity determination

References Abdolahpur Monikh F., Peery S., Karami O., Hosseini M., Bastami A.A., Ghasemi A.F. 2012 – Distribution of metals in the tissues of benthic, Euryglossa orientalis and Cynoglossus arel ., and bentho-pelagic, Johnius belangerii ., fish from three Estuaries, Persian Gulf – Bull. Environ. Contam. Toxicol. 89: 489-494. Alipour H., Pourkhabbaz A., Hassanpour M. 2013 – Assessing of heavy metal concentrations in the tissues of Rutilus rutilus caspicus and Neogobius gorlap from Miankaleh international wetland – Bull. Environ. Contam. Toxicol. 91:5 17

-Waliszewska J., Owczarzak W., Mocek A., Kaczmarek Z., McCalmont J. P.: Establishment, growth, and yield potential of the perennial grass Miscanthus × giganteus on degraded coal mine soils, Frontiers in Plant Science, 8 (2017) 726. 8. Kalinina O., Nunn C., Sanderson R., Hastings A.F., Van Der Weijde T., Özgüven M., & Clifton-Brown J.: Extending Miscanthus cultivation with novel germplasm at six contrasting sites, Frontiers in Plant Science, 8 (2017) 563. 9. Khan A., Khan S., Khan M. A., Qamar Z., Waqas M.: The uptake and bioaccumulation of heavy metals by food plants, their

Literature Cited 1. Rosada, J. The condition of an agricultural environment in Głogów Copper Smelter and Refinery impact area. RN IOR – PIB, (2008). [in Polish]. 2. Kabata-Pendias, A. & Pendias, H. (1993) Biogeochemistry of trace elements. PWN Warszawa. [in Polish]. 3. Zimny, L. (2007). Definitions and division of farming systems, Acta Agrophys. 10(2), [in Polish]. 4. Karczewska, A. (2002). Heavy metals in soils polluted by the emission from a copper smelter – forms and solubility Zesz. Nauk. AR in Wrocław pp. 159. ISSN 0867-7964 [in Polish]. 5. Kabata-Pendias, A

Abstract

The article presents a hybrid model dedicated to simulations of liquid metal flow and its solidification. The developed solution is a key component of the developed integrated modelling concept, which combines the advantages of physical and computer simulations, while the concept itself is the foundation of a scientific workshop oriented at high-temperature processes (close to solidus lines). Examples of test simulation results are presented, indicating that the adopted model assumptions are correct.

.P. & Agrawal, M. (2008). Potential benefits and risks of land application of sewage sludge. Waste Manage. 28, 347–358. DOI: 10.1016/j.wasman.2006.12.010. 4. Castaldi. P., Santona, L. & Melis, P. (2006). Evolution of heavy metals mobility during municipal solid waste composting. Fresen. Environ. Bull. 15(9), 1133–1140. 5. Yobouet, Y.A., Adouby, K., Trokourey, A. & Yao, B. (2010). Cadmium, copper, lead and zinc speciation in contaminated soils. Int. J. Eng. Sci. Tech. 2(5), 802–812. DOI: 10.1080/00103620009370502. 6. Singh. J. & Kalamdhad, A.S. (2013). Chemical

differences between the massive eel (Anguilla anguilla L.) devastations that occurred in lake Balaton in 1991 and 1995 - Ecotoxol. Environ. Saf. 37: 17-23. Barone G., Giacominelli-Stuffler R., Storelli M. 2013 - Comparative study on trace metal accumulation in the liver of two fish species (Torpedinidae): Concentration-size relationship - Ecotoxol. Envrion. Saf. 97: 73-77. Bradford M.M. 1976 - A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding - Analyt. Biochem. 72: 248-254. Cao L., Huang W

References [1] Zhao G., W.X., Tan X., Wang X., Sorption of heavy metal ions from aqueous solutions: a review , The Open Colloid Sci J, Vol. 4, 2011, 19–31. [2] Baral S.S., Das S.N., Rath P., Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust, Biochem Eng J, Vol. 31, 2006, 216–222. [3] Ho Y.S., Ng J.C.Y., McKay G., Pseudo-second order model for sorption processes, Process Biochemistry, Vol. 34(5), 1999, 451–465. [4] Ho Y.S., Ng J.C.Y., McKay G., Kinetics of pollutant sorption by biosorbents: Review , Separation and

LITERATURE CITED 1. Krämerm, U., Talke, I.N. & Hanikenne, M. (2007). Transition metal transport. Fed. Eur. Biochem. Soc. Lett . 581, 2263–2272. DOI: 10.1016/j.febslet.2007.04.010. 2. Dube, A., Zbytniewski, R., Kowalkowski, T., Cukrowska, E. & Buszewski, B. (2011). Adsorption and Migration of Heavy Metals in Soil Reviews. Pol. J. Environ. Stud. 10, 1–10. 3. Jadia, C.D. & Fulekar, M.H. (2009). Phytoremediation of heavy metals. Recent techniques. Afr. J. Biotechnol . 8, 921–928. DOI: 0.5897/AJB2009.000-9152. 4. Allaway, W.H. (1968). Agronomic control over the