Search Results

1 - 10 of 1,577 items :

  • "mechanical properties" x
Clear All

molecular structure. Polym. Degrad. Stab. 110, 184–194. DOI: 10.1016/j.polymdegradstab.2014.08.026 . 10. Wang, G. & Chen, H. (2016). Enhanced lignin extraction process from steam exploded corn stalk. Separ. Purific. Technol. 157, 93–101. DOI: 10.1016/j.seppur.2015.11.036 . 11. Gadioli, R., Morais, J.A., Waldman, W.R. & Paoli, M.A.D. (2014). The role of lignin in polypropylene composites with semi-bleached cellulose fibers: Mechanical properties and its activity as antioxidant. Polym. Degrad. Stab. 108 (oct.), 23–34. DOI: 10.1016/j.polymdegradstab.2014.06.005 . 12

., Yokoyama A., Matsumo H., Hirai T., Kawasaki T.: Fabrication of functionally graded implants by spark plasma sintering and their properties. J. Japan Soc. Powder Metall., 47 (2000), 1239-1242. Groza J. R., Zavaliangos A.: Sintering activation by external electrical field. Mater Sci. Eng. A., 287 (2000), 171-177. Charriere E., Lemaitre J., Zysset Ph.: Hydroxyapatite cement scaffolds with controlled macroporosity: fabrication protocol and mechanical properties. Biomaterials, 24 (2003), 809-817. Borisov A. A., De Luca L., Merzhanov A.: Self-propagating high

, Scientific Conference Research and Development of Mechanical Elements and Systems Jahorina – IRMES, Sarajevo, Bosnia & Hertegovina, 2002. [23] Joan Serrallach, Jacques Lacaze, Jon Sertucha, Ramón Suárez, Adrián Monzón, Effect of Selected Alloying Elements on Mechanical Properties of Pearlitic Nodular Cast Irons, Key Engineering Materials Vol. 457 (2011) p. 361-366. [24] C. O. Rusănescu M. Rusănescu, F. V. Anghelina, T. Iordanescu, Mathematical relation ships between alloying elements and technological deformability indexes, Journal of Optoelectronics and Advanced Materials

References 1. Jasiński A.: Extented operational time of domestic power units - chances and threats [in Polish], Energetyka, 3 (2013), 551-556. 2. Dobrzański J.: Materials science interpretation of the life of steels for power plants [in Polish], Open Access Library, 3, 2011. 3. Dziuba - Kałuża M., Dobrzański J., Zieliński A.: Mechanical properties of Cr-Mo and Cr-Mo-V low-alloy steel welded joints after long-term service under creep conditions, Arch. Mater. Sc. Eng., 63 (2013), 5-12. 4. Dobrzański J., Krztoń H., Zieliński A.: Development of the precipitation

-warzywnym. Przemysł Fermentacyjny i Owocowo-Warzywny, 4 , 16-20. Leighton, T.G. (2007). What is ultrasound? Progress in Biophysics and Molecular Biology, 93 , 3-83 DOI: 10.1016/j.pbiomolbio.2006.07.026. Maksymiec, M., Frąckiewicz, A., Stasiak, D.M. (2016). Produkcja żywności wspomagana ultradźwiękami . W: Przegląd wybranych zagadnień z zakresu przemysłu spożywczego. red. Szala M. i Kropiwiec K. Wydawnictwo Naukowe TYGIEL Lublin, 199-212. ISBN 9788365598196. Nowak, K., Markowski, M., Daszkiewicz, T. (2015). Ultrasonic determination of mechanical properties of meat products

nanocomposite films for water vapour, oxygen, and carbon dioxide, Polymer Testing, 27, 2008, 835–840. [9] Żenkiewicz M., Richert J., Influence of polymer samples preparation procedure on their mechanical properties, Journal of Achievements in Materials and Manufacturing Engineering, 26, 2, 2008, 155–158. [10] Stevenson L, Phillips F., O’Sullivan K., Walton J., Wheat bran: its composition and benefits to health, a European perspective, International Journal of Food Sciences and Nutrition, 63, 2012, 1001–1013. [11] Chrusciel J., Leśniak E., Fejdys M., Carbofunctional

References [1] Jose M.V., Steinert, B.W., Thomas, V., Dean, D.R., Abdalla, M.A., et al. (2006). Morphology and mechanical properties of Nylon 6/MWNT nanofibres. Polymer, 48 (2007),1096-1104. [2] Pant, H., R., Bajgai, M., P., Chuan Yi, Nirmala, R., Ki Taek Nam, et al. (2010). Effect of succesive electrospinign and the strendht of hydrogen bond on the morphology of efectrospun nylon-6 nanofibres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 370(1-3), 87-94. [3] Heikkila P., Harlin, A. (2008). Parameter study of electrospinning of polyamide-6

Engineering 167-174. Lipiński, T., 2008. Modification of Al-Si alloys with the use of a homogenous modifiers. Archives of Metallurgy and Materials 53(1), 193-197. Lipiński, T., 2008. Influence exothermical mixtures contents Na or B on elongation and hardness AlSi12 alloy. Archives of Foundry Engineering 8(1), 81-84. Lipiński, T., 2010. The structure and mechanical properties of Al-7%SiMg alloy treated with a homogeneous modifier. Solid State Phenomena 163, 183-186. Lipiński, T., 2011. Use Properties of the AlSi9Mg Alloy with Exothermical Modifier. Manufacturing Technology

1 Introduction The heat treatment is a combination of a timed heating and cooling, applied to a particular metal or alloy in the solid state to produce certain desired microstructures and mechanical properties such as hardness, toughness, yield strength, tensile strength and elongation. There are several structures in steel as ferrite, pearlite, bainite, martensite and austenite. Different phase transformations occur during the heat treatment of steel. To obtain martensite the quenching temperature must be set between 30 – 50°C for hypoeutectoid steels. According

mechanical properties of composites have been reported [ 14 ]. Joel N. increased the strength and dimensional stability of rubber products by adding a small amount of pre-dispersed short fibers to the rubber compound [ 15 ]. Moreover, Yin doped chopped carbon fiber in silicone rubber to obtain a composite material with high mechanical properties [ 16 ]. Consequently, researchers have applied short fibers in flexible composites to increase toughness [ 17 ], but few research studies were carried out to investigate the effects of short fibers on the properties of STG. Based