Search Results

1 - 9 of 9 items :

  • "matching pursuit" x
Clear All

R. Spectral Analysis of Signals. Upper Saddle River, NJ: Prentice Hall, 2005 18. Mallat S. G., Zhang Z. Matching Pursuit with time-frequency dictionaries. IEEE Transactions On Signal Processing,1993; 41(12), 3397-3415. 19. Franaszczuk P. J, Bergey G. K., Durka P. J., Eisenberg H. M. Time-frequency analysis using the matching pursuit algorithm to seizures originating from mesial temporal lobe. Electroencephalography and Clinical Neurophysiology, 1998; 106(6), 513-521. 20. Stuckey D.E., Lawson R., Luna L.E. EEG gamma coherence and other correlates of subjective

. IEEE Eng Med Biol Magazine. 2006; 25: 26-31. Mallat S, Zhang Z. Matching Pursuit with time-frequency dictionaries. IEEE Trans Signal Process. 1993; 41: 3397-3415. Traczyk WZ, Trzebski A. [Human Physiology with Elements of Applied and Clinical Physiology]. Warsaw: PZWL; 1989. Vol. 1. Polish. Ventouras EM, Alevizos I, Ktonas PY, Tsekou H, Paparrigopoulos T, Kalatzis I, Soldatos CR, Nikiforidis G. Independent components of sleep spindles. Conf Proc IEEE Eng Med Biol Soc. 2007; 1: 4002-4005. Zygierewicz J, Blinowska KJ, Durka PJ, Szelenberger W, Niemewicz Sz, Androsiuk W

References 1. Mallat S, Zhang Z. Matching pursuit with time-frequency dictionaries. Courant Institute of Mathematical Sciences New York United States; 1993 Jun 1. 2. Durka PJ, Ircha D, Blinowska KJ. Stochastic time-frequency dictionaries for matching pursuit. IEEE Transactions on Signal Processing. 2001;49(3):507-10. 3. Mallat S. Zero-crossings of a wavelet transform. IEEE Transactions on Information theory. 1991 Jul;37(4):1019-33. 4. Cunningham GS, Williams WJ. Fast computation of the Wigner distribution for finite-length signals. InAcoustics, Speech, and Signal

on Geoscience and Remote Sensing, Vol. 51 , 2013, No 9, pp. 4779-4789. 26. Chen, S. S., D. L. Donoho, M. A. Saunders. Atomic Decomposition by Basis Pursuit. – Siam Review, Vol. 43 , 2001, No 1, pp. 129-159. 27. Mallat, S. G., Z. Zhang. Matching Pursuits with Time-Frequency Dictionaries. – IEEE Transactions on Signal Processing, Vol. 41 , 1993, No 12, pp. 3397-3415. 28. Chen, Z., Y. Y. Chung, H. Chen. Sure-Let Based Sparse Representation Image Denoising. – ICIC Express Letters, Part B: Applications, Vol. 5 , 2014, No 3, pp. 739-744. 29. Wang, S. Z. Sparse Matrix

Processing 56(6): 2346-2356. Kim, S.J., Koh, K., Lustig, M., Boyd, S. andGorinevsky, D. (2007). An interior-point method for large-scale-regularized least squares, IEEE Journal of Selected Topics in Signal Processing 1(4): 606-617. Mairal, J., Bach, F., Ponce, J. and Sapiro, G. (2010). Online learning for matrix factorization and sparse coding, Journal of Machine Learning Research 11: 19-60. Mallat, S.G. and Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing 41(12): 3397-3415. Needell, D. and Vershynin, R. (2009

. SELINA, C.—NARAYANAN, S.—KUO, J. : Environmental Sound Recognition using MP-Based Features, Proc. IEEE International Conference on Acoustics, Speech and Signal Process. (ICASSP08), 2008, pp. 1-4. MALLAT, S.—ZHANG, Z. : Matching Pursuits with Time-Frequency Dictionaries, IEEE Trans. Signal Processing 41 (12) (1993),. 3397-3415. MALKIN, R. G.—WAIBEL, A. : Classifying User Environment for Mobile Applications using Linear Autoencoding of Ambient Audio, Proc. IEEE International Conference on Acoustics, Speech and Signal Process. (ICASSP05), 2005, pp. 509-512. MA, L

References Argyriou, A., Evgeniou, T. and Pontil, M. (2008). Convex multi-task feature learning, Machine Learning 73 (3): 243–272. Axler, S. (1997). Linear Algebra Done Right , Undergraduate Texts in Mathematics, Vol. 2, Springer, New York, NY. Belkin, M., Niyogi, P. and Sindhwani, V. (2006). Manifold regularization: A geometric framework for learning from labeled and unlabeled examples, Journal of Machine Learning and Research 7 : 2399–2434. Bo, L., Ren, X. and Fox, D. (2013). Multipath sparse coding using hierarchical matching pursuit, 2013 IEEE Conference

). Iterative particle matching for three-dimensional particle-tracking velocimetry. Experiments in Fluids , 61 (2), 58. [15] Gim, Y., Jang, D.K., Sohn, D.K., Kim, H., Ko, H.S. (2020). Three-dimensional particle tracking velocimetry using shallow neural network for real-time analysis. Experiments in Fluids , 61 (2), 1-8. [16] Qin, Y., Zou, J., Tang, B., Wang, Y., Chen, H. (2020). Transient feature extraction by the improved orthogonal matching pursuit and K-SVD algorithm with adaptive transient dictionary. IEEE Transactions on Industrial Informatics , 16 (1), 215-227. [17

Regional Gravity Signal Based on Stabilized Orthogonal Matching Pursuit (SOMP) , Pure and Applied Geophysics, 173, No 6, 2087-2099. 10.1007/s00024- 015-1228-1 Saadat S. A. Safari A. Needell D. 2016 Sparse Reconstruction of Regional Gravity Signal Based on Stabilized Orthogonal Matching Pursuit (SOMP), Pure and Applied Geophysics 173 6 2087 2099 10.1007/s00024- 015-1228-1 [22] T. Yamamoto, K. Fujimoto, T. Okada, Y. Fushimi, A. F. Stalder, Y. Natsuaki, M. Schmidt and K. Togashi, (2016), Time-of-Flight Magnetic Resonance Angiography With Sparse Undersampling and Iterative