Search Results

1 - 10 of 596 items :

  • "mass transfer" x
Clear All

Review. Sep. Sci. Technol.   42 , 453-475. Nagendra-Gandhi, N., Dharmendira-Kumar M. & Sathyamurthy N. (1998). Effect of Hydrotropes on Solubility and Mass-Transfer Coefficient of Butyl Acetate. J. Chem. Eng. Data.   43 , 695-699. Nagendra-Gandhi, N., Dharmendira-Kumar M. & Sathyamurthy N. (1998). Solubility and Mass Transfer Coefficient Enhancement of Ethyl Benzoate through Hydrotropy. Hungarian J. Ind. Chem.   26 , 63-68. Nagendra-Gandhi, N. & Dharmendira-Kumar M. (2000). Effect of Hydrotropes on Solubility and Mass Transfer Coefficient of Amyl Acetate

., Dharmendira Kumar, M. & Sathyamurthy, N. (1998). Solubility and mass transfer coefficient enhancement of ethyl benzoate through hydrotropy. Hungarian J. Ind. Chem ., 26, 63-68. http://www.vein.hu/HJIC/content/v26n1.html. 17. Meyyappan, N. & Nagendra Gandhi, N. (2005). Solubility and mass transfer coefficient enhancement of benzyl benzoate in water through hydrotropy. J. Chem. Engg. Data , 50, 796-800. DOI:10.1021/je049756u. 18. Gnana Prakash, D., Thenesh Kumar, S. & Nagendra Gandhi, N. (2009). Effect of hydrotropes on solubility and mass transfer coefficient of p

References [1] Mizonov V.E., Modeling, calculation and optimization of heat and mass transfer processes in the textile industry: a monograph, ISUCT, ISPU, Ivanovo, 2010, 204 pp, ISBN 978-5-9616-0350-7. [2] Kuznetsov V.A., The physical model of the mechanical dewatering process , Proceedings of the universities. Technology of textile industry, Vol. 2, 1987, 90–93. [3] Ershov S.V., Kalinin E.N., Conceptual model of the mechanical action on textile material in a roller device with dynamic mode of loading , Proceedings of the universities. Technology of textile

References [1] Chamkha Ali J. (2011): Heat and Mass transfer from MHD flow over a moving permeable cylinder with heat generation or absorption and chemical reaction . – Communications in Numerical Analysis; vol.2011, doi:10.59/2011/cna-00109. [2] Aziz A. (2009): Similarity solution for Laminar boundary layer over a flat plate with a convective surface boundary condition . – Communication of Nonlinear Science, Numerical Simulation, vol.14, pp.1064-1068. [3] Bhattacharyya K. and Gorla R.S.R. (2013): Boundary layer flow and heat transfer over a permeable

-925. [5] Chandrakala P. (2010): Radiation effects on flow past an impulsively started vertical oscillating plate with uniform heat flux. - International Journal of Dynamics of Fluids, vol.6, pp.209-215. [6] Chandrakala P. and Bhaskar P.N. (2012): Radiation effects on oscillating vertical plate with uniform heat flux and mass diffusion. - International Journal of Fluids Engineering, vol.4, pp.1-11. [7] Chandran P., Sacheti N.C. and Singh A.K. (2005): Natural convection near a vertical plate with ramped wall temperature. - Heat and Mass Transfer, vol.41, pp.459-464. [8

References 1. Rahbar Kelishami, A., Bahmanyar, H. & Moosavian, M.A. (2011). Prediction of mass transfer coefficients in regular packed columns, Chem. Eng. Communications 198:8, 1041-1062. DOI: 10.1080/00986445.2011.545305. 2. Ku mar, A. & Hartland, S. (1999). Co rrelations for prediction of mass transfer coefficients in single drop systems and liquid-liquid extraction columns, Institution of Chemical Engineers, Trans. IChemE. 77, Part A, 372-384. DOI: 10.1205/026387699526359. 3. Ne wman, A.B. (1931). Th e dr ying of porous solids: Diffusions and surface emission

References Ahmad N., Patel G.S. and Siddappa B. (1990): Visco-elastic boundary layer flow past a stretching plate and heat transfer. - ZAMP, vol.41, pp.291. Ashok V. Singh, Pallath Chandran and Nirmal C.S. (2000): Effect of transverse magnetic fluid on a flat plate thermometer. - Int. J. of Heat and Mass Transfer, vol.43, pp.3253. Chaim T.C. (1982): Micropolar fluid flow over a stretching sheet. Journal of Applied Mathematic and Mechanic (ZAMM), vol.62, pp.565. Chen C.K. and Char M.I. (1986): Heat transfer of a continuous stretching sheet with suction of blowing

curved enclosure . − The European Physical Journal Plus, vol.131, 253. [7] Hayat T., Waqas M., Shehzad S.A. and Alsaedi A. (2016): On model of Burgers fluid subject to magneto nanoparticles and convective conditions. − Journal of Molecular Liquids, vol.222, pp.181-187. [8] WaqasM., Muhammad Farooq Muhammad Ijaz Khan Ahmed Alsaedi, Hayat T. and Yasmeen T. (2016): Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition . − International Journal of Heat and Mass Transfer, vol.102, pp.766-772. [9

. and Brenier, Y. (2000). A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numerische Mathematik 84(3): 375-393. Bosc, D. (2010). Numerical approximation of optimal transport maps, SSRN Electronic Journal, DOI: 10.2139/ssrn.1730684. Caffarelli, L., Feldman, M. and McCann, R. (2002). Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs, Journal of the American Mathematical Society 15(1): 1-26. Gabriel, J., González-Hernández, J. and López-Martínez, R. (2010). Numerical approximations to the

References 1. Momirian, M. & Vesiroglu,T.N, Renewable Sustainable Energy (2002), Rev6, 141-179. Doi:10.1016/j. ijhydene.2011.01.008.6. 2. Jemni, A. & Nasrallah, B.S. Study of 2- Dimensional Heat transfer and Mass transfer during absorption in a metal - Hydrogen Reactor.Int.j.Hydrogen Energy(1995),20(1), 43-52 .Doi:10.1016/0360-3199(93) E0007-8. 3. Aldas, K., Mat, M.D. & Kaplan, Y. Three Dimensional mathematical model for absorption in a metal hydride bed. Int. J.Hydrogen Energy (2002), 27(10), 1049-1056.Doi:10.1016/j.ijhydene.2008.12.096. 4. Mayer, U., Grol, M