Search Results

1 - 10 of 2,510 items :

Clear All
Logic of Algorithmic Knowledge

-ideal agents. Ph.d.thesis, Tarragona, Universitat Politecnica de Catalunya. [7] D. Surowik, (2013), Logic, Knowledge and Time (in Polish), Bialystok Univer- sity.

Open access
Indeterministic Temporal Logic

:// www.newadvent.org/fathers/1406.htm (Translated by Richard Stothert) Augustinus Hipponesis. (2010). Contra faustum manichaeum libri triginta tres. Citraà Nouva Editrice. Retrieved from http://www.augustinus.it/latino/ contro fausto/ (Edizione completa latino) Gabbay, D. M. (1981). An irreflexivity lemma with applications to axiomatizations of conditions on linear frames. In U. Mönnich (Ed.), Aspects of philosophical logic (pp. 67-89). Dordrecht: Reidel. Kamp, J. A. W. (1968). Tense logic and the theory of linear order

Open access
Logical Determinacy versus Logical Contingency. The Case of Łukasiewicz’s Three-valued Logic

References 1. Bobzien, S. Determinism and Freedom in Stoic Philosophy , Oxford: Clarendon Press, 1998. 2. Garson, J. W. Modal Logic for Philosophers , Cambridge: Cambridge University Press, 2006. 3. Łukasiewicz, J. O logice trójwartościowej, Ruch filozoficzny 5, 1920, pp. 170–171б; English translation: On three-valued logic, In L. Borkowski (ed.), Selected works by Jan Łukasiewicz , Amsterdam: North–Holland, 1970, pp. 87-88.

Open access
Algebraization of Jaśkowski’s Paraconsistent Logic D2

References Arieli, O., Avron, A., & Zamansky, A. (2011). Ideal Paraconsistent Logics. Studia Logica, 99(1-3), 31-60. Béziau, J.-Y. (2006). The paraconsistent logic Z. A possible solution to Jaśkowski’s problem. Logic and Logical Philosophy, 15(2), 99-111. Chellas, B. F. (1980). Modal Logic: An Introduction. Cambridge: Cambridge University Press. Ciuciura, J. (2008). Negations in the Adjunctive Discursive Logic. Bulletin of the Section of Logic, 3 7(3-4), 143-160. Ciuciura, J

Open access
Defining Cognitive Logics by Non-Classical Tableau Rules

References Antoniou Grigoris, Nonmonotonic Reasoning, MIT, 1997. Jarmużek Tomasz, Tkaczyk Marcin, A method of defining paraconsistent tableaus, pp. 295-307, in New Directions in Paraconsistent Logic, J. Y. Beziau, M. Chakraborty and S. Dutta (eds.), vol. 152 of series Springer Proceedings in Mathematics and Statistics, Springer India, 2015. Jarmużek Tomasz, Formalizacja metod tablicowych dla logik zdań i logik nazw (Formalization of tableau methods for propositional logics and for logics of names), Wydawnictwo

Open access
Logical Culture as a Common Ground for the Lvov-Warsaw School and the Informal Logic Initiative

References Adler, J.E. (1994). Fallacies and Alternative Interpretations. Australasian Journal of Philosophy 72(3), 271-282. DOI: 10.1080/00048409412346091 Ajdukiewicz, K. (1957). Zarys logiki (The Outline of Logic). Warsaw: PZWS - Państwowe Zakłady Wydawnictw Szkolnych. Ajdukiewicz, K. (1965). Co może szkoła zrobić dla podniesienia kultury logicznej uczniow (What school can do to improve the logical culture of students). In K. Ajdukiewicz, Język i poznanie, vol. II (Language and Cognition, vol. II) (pp. 322

Open access
A Decision Logic Approach to Mill’s Eliminative Induction

References Ajdukiewicz, K. (1974). Pragmatic logic. Trans. from the Polish by Olgierd Wojtasiewicz. Dordrecht, Boston, Warsaw: PWN. Ajdukiewicz, K. (1985). Klasyfikacja rozumowań [Classification of Reasoning]. In: K. Ajdukiewicz, Język i poznanie [Language and Cognition]. Warsaw: PWN, vol. 2. Bolc, L., Cytowski, J., Stacewicz, P. (1996). O logice i wnioskowaniu przybliżonym [On rough logic and rough reasoning]. Prace IPI PAN, issue 822, Warsaw: Wydawnictwo IPI PAN. Borkowski, L. (1970). Logika

Open access
Philosophical Problems of Foundations of Logic

References 1. Antonelli A.G., “Non-monotonic Logic”, [in:] Edward N. Zalta (ed.), Stanford Encyclopedia of Philosophy, 2010. <http://plato.stanford.edu/entries/logic-nonmonotonic/>. 2. Barwise, J. and S. Feferman (eds.), Model-theoretic Logics. New York: Springer-Verlag, 1987. 3. Barwise, J., “Model-theoretic Logics: Background and Aims”, [in:] Jon Barwise and Solomon Feferman (eds.), Model-theoretic Logics, New York: Springer-Verlag, 1987, 4-23. 4. Bates, J., “Etchemendy, Tarski, and Logical

Open access
Co-constructive Logics for Proofs and Refutations

References 1. Bellin, G., Carrara, M., Chiffi, D., and Menti, A. Pragmatic and dialogic interpretations of bi-intuitionism. Logic and Logical Philosophy, 2014. 2. Brouwer, L. L.E.J. Brouwer: collected works. Amsterdam: North-Holland Publishing Company, 1975. 3. Cook, R. T. and Cogburn, J. What negation is not: Intuitionism and ‘0=1’, Analysis, 60(265):5-12, 2000. 4. Crolard, T. Subtractive logic, Theoretical Computer Science, 254(1):151-185, 2001. 5. Dubucs, J. Feasibility in logic, Synthese, 132(3):213-237, 2002. 6. Dubucs, J. and Marion

Open access
Grzegorczyk’s Logics. Part I

set. Formalized Mathematics , 1(1):153-164, 1990. [6] Czesław Bylinski. Partial functions. Formalized Mathematics , 1(2):357-367, 1990. [7] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics , 1(1):47-53, 1990. [8] Agata Darmochwał. Finite sets. Formalized Mathematics , 1(1):165-167, 1990. [9] Joanna Golinska-Pilarek and Taneli Huuskonen. Logic of descriptions. A new approach to the foundations of mathematics and science. Studies in Logic, Grammar and Rhetoric, 40(27), 2012

Open access