Search Results

1 - 10 of 828 items :

  • "least squares" x
Clear All

. Krarup, T. (1969): A contribution to the mathematical foundation of physical geodesy. Publ. Danish Geod. Inst. 44, Copenhagen. Krarup, T. (1980): Integrated geodesy. In: Proceedings of the International School of Advanced Geodesy. Bollettino di Geodesia e Scienze Affini. Vol. 38, pp. 480-496. Moritz, H. (1973): Least-squares collocation. DGK, A 59, Muenchen. Moritz, H. (1980): Advanced Physical Geodesy. Herbert Wichmann Verlag Karlsruhe. Sanso, F. (1986): Statistical methods in physical geodesy. In: Mathematical and numerical techniques in physical geodesy , H

). Numerical Methods for Least Squares Problems , SIAM, Philadelphia, PA. Demidenko, E.Z. (2008). Criteria for unconstrained global optimization, Journal of Optimization Theory and Applications 136 (3): 375-395. Demidenko, E.Z. (2006). Criteria for global minimum of sum of squares in nonlinear regression, Computational Statistics & Data Analysis 51 (3): 1739-1753. Demidenko, E.Z. (1996). On the existence of the least squares estimate in nonlinear growth curve models of exponential type, Communications in Statistics-Theory and Methods 25 (1): 159-182. Dennis, J.E. and

, IEEE Transactions on Neural Networks   19 (9): 1599-1614. Henson, M. A. and Seborg, D. E. (1994). Adaptive nonlinear control of a pH neutralization process, IEEE Transactions on Control System Technology   2 (3): 169-182. Huicheng, W. L. L. and Taiyi, Z. (2008). An improved algorithm on least squares support vector machines, Information Technology Journal   7 (2): 370-373. Ku, C.-C., and Lee, K. Y. (1995). Diagonal recurrent neural networks for dynamic systems control, IEEE Transactions on Neural Networks   6 (1): 144-156. Li-Juan, L., Hong-Y, S. and Jian, C

://doi.org/10.1016/j.aca.2011.06.040 11. K. Kotnik, T. Kosjek, U. Krajnc and E. Heath, Trace analysis of benzophenone-derived compounds in surface waters and sediments using solid-phase extraction and microwave-assisted extraction followed by gas chromatography-mass spectrometry, Anal. Bioanal. Chem . 406 (2014) 3179–3190; https://doi.org/10.1007/s00216-014-7749-0 12. A. El-Gindy, S. Emara and A. Mostafa, UV partial least-squares calibration and liquid chromatographic methods for direct quantitation of levofloxacin in urine, J. AOAC Int . 90 (2007) 1258–1265; https

References Christensen R. (2011) Plane answers to complex questions: the theory of linear models, Springer Ghilani C.D. (2010) Adjustment computations–spatial data analysis, 5 th edition, Wiley, New Jersey Goldberger A.S. (1962) Best Linear Unbiased Prediction in the Generalized Linear Regression Model, Journal of the American Statistical Association, 57(298), 369–375 Hardy R.L. (1977) Least squares prediction, Photogrammetric Engineering and Remote Sensing, 43(4), 475–492 Hausbrandt S. (1970) Rachunek wyrównawczy i obliczenia geodezyjne, PPWK Warszawa Krarup T

References [1] G. H. Golub, Numerical methods for solving linear least squares problems , Numer. Math., 7(3) (1965), 206-216. [2] L. Landweber, An Iteration Formula for Fredholm Integral Equations of the First Kind , American J. of Math., 73(3) (1951), 615-624. [3] C. F. van Loan, Generalizing the singular value decomposition , SIAM J. Numer. Analysis, 13(1) (1976), 76-83. [4] C.C. Paige and M.A. Saunders, Towards a generalized singular value decomposition , SIAM J. Numer. Analysis, 18(3) (1981), 398-405. [5] C. Popa, T. Preclik, H. Köstler, U. Rüde, Some

.123-138. Kamiński M. (2013): The Stochastic Perturbation Method for Computational Mechanics. - Chichester: Wiley. Kamiński M. and Solecka M. (2013). Optimization of the aluminium and steel telecommunication towers using the generalized perturbation-based Stochastic Finite Element Method. - Journal of Finite Elements Analysis and Design, vol.63, No.1, pp.69-79. Kamiński M. and Strąkowski M. (2013): On the least squares stochastic finite element analysis of the steel skeletal towers exposed to the fire. - Archives of Civil and Mechanical Engineering, vol.13, pp.242

, Academic Press, New York, 1970. [10] J.F. Potra , On an iterative algorithm of order 1.839 ...for solving nonlinear operator equations, Numer. Func. Anal. Opt. , 7(1) , (1985), 75–106. [11] S.M. Shankhno and O.P. Gnatyshyn , On an iterative algorithm of order 1.839 ...for solving the nonlinear least squares problems, Appl. Math. Comput. , 161 , (2005), 253–264. [12] R. Ewing, K. Gross, and C. Martin , Newton’s method estimates from data at one point, in:The merging of disciplines: New directions in Pure Applied and Computational Mathematics , Springer, New York

synthetic and pharmaceutical formulations, Anal. Chim. Acta   437 (2001) 247-257; DOI: 10.1016/2FS0003-2670/2801/2901008-X. M. Blanco, J. Coello, F. Gonzalez, H. Iturriaga, S. Marpoch and X. Tomas, Spectrophotometric determination of pharmaceutical dosages by partial least squares calibration, J. Pharm. Biomed. Anal.   12 (1994) 509-514; DOI: 10.1016/2F0731-7085/2893/29E0004-7. G. Bagherian, M. Arab Chamjangali and H. Eskandari, Simultaneous determination of cobalt and palladium in micellar medium using H-point standard addition method and partial least square

Abstract

In order to be able to realize out the mixing detection or harmonic generation functions, a non-linear circuit is necessary for different existing devices and for performing these types of operation, in the submillimetric and / or far-infrared domains (10 μm ≤ λ ≤ 1 mm), the spectral margin covered by this radiation ranging from 300 GHz to 30 THz. In these frequency domains, non-linear point devices are often used, unlike the optical domain where massive devices are widely used, among them the Josephson Junction (JJ) is mainly used in the case where low noise is desired. This paper present electrical characteristic of Josephson Junction (JJ) using Approximation in the sense of Least Squares, for different value of Cj, T, Rj.