Search Results

1 - 10 of 422 items :

  • "interpolation" x
Clear All

References [1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988. [2] F. Cobos, M. Cwikel, and Matos. P., Best possible compactness results of Lions–Peetre type, Proc. Edinb. Math. Soc., 44, (2001), 153-172. [3] F. Cobos and R. Romero, Lions–Peetre type compactness results for several Banach spaces, Mathematical Inequalities & Applications, 7, number 4, (2004), 557-571. [4] A. A. Dmitriev, The interpolation of one-dimensional operators, Anal. i Prilozen, 11,(in Russian), (1973), 31-43. [5] S. G. Krein, J. I. Petunin, and E. M

References [1] J. Bergh and J. Löfström, Interpolation spaces, An introduction, Springer-Verlag, Berlin, Heidelberg, New-York, 1976. [2] Yu. A. Brudnyi and N. Ya. Krugljak, North-hooland, Amsterdam, 1991. [3] P. L. Butzer and H. Berens, Semi-groups of operators and aproximation, Basel:Birkhäuser, 1972. [4] N. Deutsch, Interpolation dans les espaces vectoriels topologiques localment convex, Mémoires de la S.M.F., 13, (1968), 3-187. [5] C. Goulaouic, Prolongements de foncteurs d'interpolation et applications, Annales de l'institut Fourier, 18, nr.1, (1968), 1

References [1] A.Baboș, Some interpolation operators on triangle , The 16th International Conference The Knowledge - Based Organization, Applied Technical Sciences and Advanced Military Technologies, Conference Proceedings 3, pp.28-34, 2010. [2] A.Baboș, Interpolation operators on a triangle with one curved side , General Mathematics, Vol.22, No.1, pp.125-131, 2014. [3] A.Baboș, Applications of interpolation , Buletin științific, Nr.2 (40), pp.121-125, 2015. [4] A.Baboș, Surface generated by blending interpolation on a triangle ,Scientific Studies andResearch

References [1] Fasshauer G.E., Meshfree Approximation Methods with Matlab , World Scientific Publishing, Singapore 2007. [2] Belytschko T., Krongauz Y., Organ D., Flrming M., Krysl P., Meshless methods: an overview and recent developments , Computer Methods in Applied Mechanics and Engineering, Vol. 139, 1996, 3–47. [3] Liu G.R., Meshlees Methods – Moving beyond the Finite Element Method , CRC Press, Boca Raton, Florida 2003. [4] Buhmann M.D., Multivariete interpolation using radial basis functions , Ph.D. Dissertation, University of Cambridge, 1989. [5

measured responses. This matrix is constructed so that it has maximum rank and minimal condition number. From the matrix of all measured responses the response vector witch do not rise the rank of the matrix is eliminated, and in the same way the response vector witch perturbs the condition number of the matrix is also eliminated. The information matrix P is expressed in terms of P ( s i ) using Lagrange polynomial interpolation applied to n by n matrices. The formulation is then P ( s ) = ∑ i = 1 m L i ( s ) P ( s i ) $$\begin{array}{} \displaystyle P

References Barnhil, R.E., “Representation and approximation of surfaces”, Mathematical Software III, New-York (1997): 68-119. Barnhil, R.E. and Gregory, J.A., “Polynomial interpolation to boundary data on triangles”, Math. Comput. 29(131), (1975): 726-735. Birkhoff, G., “Interpolation to boundary data in triangles”, J. Math. Anal. Appl. 42, (1973): 474-484. Coman, Gh. and Blaga P., “Interpolation operators with applications (2)”, Scientae Mathematicae Japonicae, 69, No. 1, (2009): 111-152. Coman, Gh. and Ganscă, I., “Blending approximations with applications in

References [1] Baboș, A., Interpolation operators on a triangle with two and three curved edges, Creat. Math. Inform. , No. 2, pp. 135-142, 2011. [2] Baboș, A., Cheney-Sharma type operators on a triangle with two and three curved edges, Ukrainian Mathematical Journal (accepted). [3] Barnhill, R.E., Birkhoff, G., Gordon, W.J., Smooth interpolation in triangles, J. Approximation Theory, 8, pp. 114-128, 1973. [4] Barnhill, R.E., Gregory, J.A., Polynomial interpolation to boundary data on triangles, Math. Comp., 29, pp. 726-735, 1975. [5] Cătinaș, T., Blaga, P

, , 2017 [online, accessed: 20.09.2018]. [17] Riebman A. R., Bell R. B., Gray S., Quality Assessment for Super-Resolution Image Enhancement, 2006 International Conference on Image Processing , pp. 2017-2020, 2006. [18] Santhosh G_, Zoom An Image With Different Interpolation Types, CodeProject , , 2011 [on-line, accessed: 20.09.2018]. [19] Silva M. A. G., Real Time Pixel Art Remasterization on GPUs with CUDA, https

References Gawędzki, W. (1996). Accuracy analysis of a measurement system auto-calibration method. In Proceedings of the IMEKO TC4: 8th International Symposium on New Measurement & Calibration Methods of Electrical Quantities & Instruments, 16-17 September 1996 (pp. 218-221). Budapest, Hungary. Gawędzki, W. (2006). Algorytm auto-kalibracji torów pomiarowych poprzez wielomianową interpolację funkcji przetwarzania (An algorithm of self-calibration for measurement channels by means of polynomial interpolation of conversion function). Pomiary, Automatyka, Kontrola

Synthesis across Processes, Places and Scales, Cambridge University Press, 500 p. Gaál, L., Kyselý, J., Szolgay, J., 2008. Region-of-influence approach to a frequency analysis of heavy precipitation in Slovakia. Hydrology and Earth System Sciences, 12, 3, 825-839. Gottschalk, L., 1993. Interpolation of runoff applying objective methods. Stoch. Hydrol. Hydraul., 7, 269-281. Hrachowitz, M., Savenije, H.H., Blöschl, G., McDonnell, J.J., Sivapalan, M., Pomeroy, J., Arheimer, B., Blume, T., Clark, M.P., Ehret, U., Fenicia, F., Freer, J.E., Gelfan, A., Gupta, H.V., Hughes, D