Search Results

1 - 10 of 200 items :

  • "internal combustion engine" x
Clear All
Exhaust Gas Temperature Measurements in Diagnostics of Turbocharged Marine Internal Combustion Engines Part I Standard Measurements

, 2012, p. 937-946. 5. Kluj S.: Diagnostics of marine equipment (in Polish). Monographic publication. AM Gdynia 2000. 6. Pfriem, H.: Zur messung vernderlicher temperaturen von gasen und flssigkeiten (On the measurement of fluctuating temperatures of gases and fluids). Forschung auf dem Gebiete des Ingenieurwesens,7(2)/1936, pp. 85-92 (in German). 7. Piotrowski I., Witkowski K.: Operation of marine internal combustion engines (in Polish). Monographic publication. Gdynia Maritime Academy, Gdynia 2002. 8

Open access
The semi-Markov model of energy state changes of the main marine internal combustion engine and method for evaluating its operation during ship voyage

References Firkowicz S.: Statistic evaluation of quality and reliability of electron tubes (in Polish). WNT, Warszawa 1963. Girtler J.: a method for evaluating the performance of a marine piston internal combustion engine used as the main engine on a ship during its voyage in different sailing conditions Polish Maritime Research. Vol. 17, iss. 4(67), 2010. Girtler J.: Physical aspect of application and usefulness of semi-Markovian processes for modelling the processes occurring in

Open access
Inverse Problem of Selection of the Theoretical Cycle for the Real Cycle of Internal Combustion Engine

References [1] Cordier, M., et al., Increasing Modern Spark Ignition Engine Efficiency , SAE Technical Paper 2016-01-2172. [2] Basshuysen, R., Schäfer, F., Handbuch Verbrennungsmotor, Grundlagen, Komponenten, Systeme, Perspektiven , SAE International 2004. [3] Ferguson, C. R., Internal combustion engines , Applied Thermo-Sciences, John Wiley & Sons Inc., 1986. [4] Köhler, E., Verbrennungsmotoren, Motormechanik , Berechnung und Auslegung des Hubkolbenmotors Vieweg Fachbuch, Wiesbaden 2002. [5] Miao, Y., et al., Industrial

Open access
Implementation of energy efficiency programs using cogeneration based on internal combustion engines

Abstract

The paper presents an analysis of implementation of CHP plants based on internal combustion engines at different industrial companies. The authors have presented general aspects regarding utilization of internal combustion engines for cogeneration. There have been presented different possibilities of classification of internal combustion engines. Further on authors have presented different possibilities for increasing the efficiency of internal combustion engines, including: supercharging compression ratio increase, advanced heat recuperation for combined production of heat and power. There have also been presented different measures for increasing energy efficiency on site, including measures for CHP plant and internal combustion engines and measures for other auxiliary equipment and measures for technological equipment. In the second part of the paper authors have presented three case studies of utilization of internal combustion engines at a cogeneration plant for different industrial companies: cogeneration plant at a company from pharmaceutical sector, cogeneration plant at a beer production company and cogeneration plant at a company of electrical insulation materials. The results of the analysis led to following conclusions: implementation of cogeneration solutions based on internal combustion engines lead to significant financial savings, implementation of cogeneration solutions based on internal combustion engines can also lead to reducing environmental impact, it ensures higher global energy production efficiency and higher power efficiency compared to National Power System and to separate power and heat generation, it can lead to increased safety in energy supply of the company, it can also increase the reliability of power supply in cases of National Power Grid faults.

Open access
Exhaust Gas Temperature Measurements in Diagnostics of Turbocharged Marine Internal Combustion Engines Part II Dynamic Measurements

. Polish Maritime Research, 2(65)/2010, Vol.17, p. 29-35. 7. Korczewski Z.: Exhaust gas temperature measurements in diagnostic examination of naval gas turbine engines. Part III. Diagnostic and operating tolerances. Polish Maritime Research, No. 4(71)/2011, Vol.18, p. 49-53. 8. Korczewski Z.: Analysing possible use of the diagnostic model of piston-crankshaft systems in internal combustion engines and evaluating its practical applicability for controlling rationally the operation of these engines taking into account an expert system (in

Open access
The Fourier Transform as a New Approach of Evaluating the Internal Combustion Engine Indicator Diagram

Abstract

In this paper, the authors present an introduction to the new method of evaluating the indicator diagram of internal combustion engine. For several years, it was observed that analyses of combustion processes have been hardly changed since they were conducted for the first time. At the moment, the diagrams are plotted more and more precisely owing to the new sensors and digital processors. Despite all of these high technical advantages, which were obviously unavailable in the past, theoretical approach for describing indicator diagram has not changed in significant way. Nowadays, the indicator diagrams are still evaluated very generally and are presented in much too idealistic way as a smooth curve of pressure changes, without any disturbances, which are being detected very easily now. Furthermore, it appears that performance improvements of the IC engines are in need of developing new methods for analysis and evaluation. The Fourier transform is a new way to look at the combustion process in the engines. It is basically a mathematical instrument for analysing different types of signals, which are transformed, from time domain into frequency domain. It enables identifying specific sinusoidal components of arbitrary signals and separates relevant ones from the noise. This allows one to see significant differences in two or more apparently similar signals and detect the crucial parts. If we treat pressure changes in time like a common signal, we can compute Fourier transform and see basic components of the diagram.

Open access
Identification Of Damages Of Tribological Associations In Crankshaft And Piston Systems Of Two-Stroke Internal Combustion Engines Used As Main Propulsion In Sea-Going Vessels And Proposal Of Probabilistic Description Of Loads As Causes Of These Damages

BIBLIOGRAPHY 1. Aeberli K.: New high-economy engines for panama containerships and large tankers, Wartsila Switzerland Ltd, Winterthur, September 2007 2. Brun R.: High-speed diesel engines (in Polish). WKiŁ, Warsaw 1973 3. Gercbach I.B., Kordonski Ch., B.: Reliability models of technical objects (in Polish). WNT, Warsaw 1968 4. Girtler J.: Controlling the process of operation of marine internal combustion engines based on the diagnostic decision-making model (in Polish). ZN AMW, nr 100A, Gdynia 1989 5. Girtler J., Kuszmider S

Open access
A New Fuel-Injection Mechatronic Control Method for Direct-Injection Internal Combustion Engines

Abstract

In this paper, a novel fuel-injection mechatronic control method and system for direct injection (DI) internal combustion engines (ICE) is proposed. This method and system is based on the energy saving in a capacitance using DC-DC converter, giving a very fast ON state of the fuel injectors’ electro-magnetic fluidical valves without an application of the initial load current. A fuel-injection controller for the DI ICEs that provides a very short rising time of an electromagnet-winding current in an initial ON state of the fuel-injector’s electromagnetic fluidical valves, which improves a fuel-injection controller reliability and simplify its construction, is presented. Due to a number of advantages of afore -mentioned fuel-injection mechatronic control method and system, it may be utilised for the DI ICEs with fuel injectors dedicated to all types of liquid and/or gas fuels, for example, gasoline, diesel-oil, alkohol, LPG and NPG.

Open access
The Diesel and the Vegetable oil Properties Assessment in terms of Pumping Capability and Cooperation with Internal Combustion Engine Fuelling System

), Testing properties of engine oil mix with rape oil methyl esters, MOTROL - Motorization and Power Industry in Agriculture, Vol. 7, 24-34. 8. Bocheński C. I., Warsicki K., Bocheńska A. M. (2005), Comparison of process of stream creation and diesel oil and rape oil esters combustion in the research combustion chamber at single - and diphause fuel injection, Journal of KONES Internal Combustion Engines, Vol. 12(3-4), 33-42. 9. Canakci M. (2007), Combustion characteristics of a turbocharged DI compression ignition engine fueled with petroleum

Open access
Comparison of emissions depending on the type of vehicle engine

the Transient Test Cycle” The Proceedings Of The International Symposium On Diagnostics And Modeling Of Combustion In Internal Combustion Engines, 2008., vol. 7(0), pp. 27-34. Doi: 10.1299/jmsesdm.2008.7.27 [27] Boriboonsomsin, K, Durbin, K., Scora, G., Johnson, K., Sandez, D., Vu, A. et al., “Real-world exhaust temperature profiles of on-road heavy-duty diesel vehicles equipped with selective catalytic reduction” Science of the total environment, 2018, vol., 634, pp.909 – 921, DOI: 10.1016/j.scitotenv.2018.03.362 [28] Sarkan, B., Stopka, O., Gnap, J

Open access