Search Results

1 - 10 of 2,268 items :

  • "inequality" x
Clear All

References [1] Cerone P., Dragomir S.S., Roumeliotis J., Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio Math. 32 (1999), no. 4, 697-712. [2] Mitrinovic D.S., Pecaric J.E., Fink A.M., Classical and new inequalities in analysis, Mathematics and its Applications (East European Series), vol. 61, Kluwer Academic Publishers Group, Dordrecht, 1993. [3] Pecaric J.E., Proschan F., Tong Y.L., Convex functions, partial orderings, and statistical applications, Mathematics in Science and Engineering, vol. 187, Academic Press

References [1] CERONE, P.-DRAGOMIR, S. S.: A refinement of the Gr¨uss inequality and applications, Tamkang J. Math. 38 (2007), 37-49. Preprint RGMIA Res. Rep. Coll. 5 (2002), Art. 14. http://rgmia.org/papers/v5n2/RGIApp.pdf. [2] CERONE, P.-DRAGOMIR, S. S.: Some applications of de Bruijn’s inequality for power series, Integral Transforms Spec. Funct. 18 (2007), 387-396. [3] DRAGOMIR, S. S.: Discrete Inequalities of the Cauchy-Bunyakovsky-Schwarz Type, Nova Sci. Publ. Inc., Hauppauge, N.Y., 2004. [4] DRAGOMIR, S. S.-IONESCU, N. M.: Some converse of Jensen

References [1] Alomari M., Darus M., On the Hadamard’s inequality for log-convex functions on the coordinates, J. Inequal. Appl. 2009, Article ID 283147, 13 pp. [2] Azócar A., Nikodem K., Roa G., Fejér-type inequalities for strongly convex functions, Ann. Math. Sil. 26 (2012), 43-53. [3] Azpeitia A.G., Convex functions and the Hadamard inequality, Rev. Colombiana Mat. 28 (1994), 7-12. [4] Díaz R., Pariguan E., On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat. 15 (2007), no. 2, 179-192. [5] Dragomir S.S., Two mappings in connection to Hadamard

References Antal, E., M. Langel, and Y. Tillé. 2011. “Variance Estimation of Inequality Indices in Complex Sample Designs.” In Bulletin of the International Statistical Institute Proceedings of the 58th World Statistics Congress, 21st-26th August 2011, Dublin Convention Centre, 1036-1045. Available at: http://2011.isiproceedings.org/papers/450008.pdf (accessed April 2017). ISBN: 978-90-73592-33-9. Bonferroni, C.E. 1930. Elementi di Statistica Generale. Firenze: Seeber. DeVergottini, M. 1940. “Sul Signicato di Alcuni Indici di Concentrazione.” Giornale degli

References Amiel, Y. (1999). The Measurement of Income Inequality: The Subjective Approach, in: Jacques Silber (ed.), Handbook of Income Inequality Measurement. Dordrecht: Kluwer Academic Publishers: 227-241. Atkinson, A. B. (1970). On the Measurement of Inequality, Journal of Economic Theory. 2: 24463. Belk, R. W. (1985). Materialism: Trait Aspects of Living in the Material World, Journal of Consumer Research. 12: 265-280. Cowell, F. A. (2000). Measurement of Inequality, in: Anthony B. Atkinson and Francois Bourguignon (eds.), Handbook of Income

References [1] R.P. Agarwal, D. O’Regan, S.H. Saker: Dynamic Inequalities on Time Scales . Springer International Publishing, Cham, Switzerland (2014). [2] M.R.S. Ammi, D.F.M. Torres: Hölder’s and Hardy’s two dimensional diamond-alpha inequalities on time scales. Ann. Univ. Craiova, Math. Comp. Sci. Series 37 (1) (2010) 1–11. [3] D. Anderson, J. Bullock, L. Erbe, A. Peterson, H. Tran: Nabla dynamic equations on time scales. Panam. Math. J. 13 (1) (2003) 1–48. [4] E.F. Beckenbach, R. Bellman: Inequalities . Springer, Berlin, Göttingen and Heidelberg (1961

References [1] R.P. Agarwal and P. Y. H. Pang,: Sharp opial-type inequalities in two variables. Appl Anal. 56(3):227–242 (1996). [2] H. Budak and Sarikaya, Refinements of Opial type inequalities in two variables, ResearchGate Article: www.researchgate.net/publication/329091454 . [3] Z. Changjian, and W. Cheung,On improvements of Opial-type inequalities. Georgian Mathematical Journal, 21(4), pp. 415-419, 2014. [4] W.S. Cheung, Some new Opial-type inequalities, Mathematika, 37 (1990), 136–142. [5] W.S. Cheung, Some generalized Opial-type inequalities, J. Math

Gender Gap in Access to Capital”. The Times of India. June 19. International Labour Organization. 2014. Global Employment Trends 2014: Risk of Jobless Recovery Zimmerman, Jamie; Tosh, Nicole and Nick McClellan. 2012. Map: What Countries Have the Worst Gender Gaps? Slate. March 6. Kabir, Naila. 2014. What Works in Reducing Gender Inequality. Available: https://oxfamblogs.org/fp2p/what-works-in-reducing-gender-inequality-greatoverview-from-naila-kabeer/ [Accessed 2015, January, 12] Lal, Neeta. 2016. India Needs to “Save its Daughters” Through Education and Gender

References Alvaredo, F., Atkinson, A. B., Piketty, T., & Saez, E. (2013). The Top 1 Percent in International and Historical Perspective. Journal of Economic Perspectives, 27(3), 3-20. http://doi.org/10.1257/jep.27.3.3 Cowell, F. A. (2011). Measuring inequality (3rd ed). Oxford: Oxford University Press. Galbraith, J. K. (2007). Global inequality and global macroeconomics. Journal of Policy Modeling, 29(4), 587-607. http://doi.org/10.1016/j.jpolmod.2007.05.008 Hwang, C.L., Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications. New York

References [1] A. M. Acu and F. D. Sofonea, On an inequality of Ostrowski type. J. Sci. Arts 2011, no. 3(16), 281-287. [2] A. M. Acu, A. Baboş and F. D. Sofonea, The mean value theorems and inequalities of Ostrowski type. Sci. Stud. Res. Ser. Math. Inform. 21 (2011), no. 1, 5-16. [3] S. S. Dragomir, An inequality of Ostrowski type via Pompeiu's mean value theorem. J. Inequal. Pure Appl. Math. 6 (2005), no. 3, Article 83, 9 pp. [4] A. Ostrowski, Über die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Hel, 10 (1938