Search Results

1 - 10 of 75 items :

  • "hydrometallurgy" x
Clear All

-978. DOI: 10.2478/amsc-2013-0068. 4. Gupta, C. K., & Mukherjee, T. K. (1990). Hydrometallurgy in extraction processes (Vol. 1). Boca Raton: CRC Press. 5. Fleming, C. A. (1992). Hydrometallurgy of precious metals recovery. Hydrometallurgy, 30(1/3), 127-162. 6. Tuncuk, A., Stazi, V., Akcil, A., Yazici, E. Y., & Deveci, H. (2012). Aqueous metal recovery techniques from e-scrap: hydrometallurgy in recycling. Miner. Eng., 25(1), 28-37. 7. Yang, R., Wang, S., Duan, H., Yan, X., Huang, Z., Guo, H., & Yang, X. (2016). Effi cient separation of copper and nickel from ammonium

removal of dyes from aqueous solution.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 389(1-3): 43-49. Gray, M.A. (1990). “The United Nations Environment Programme: An Assessment.” Envtl. L. 20: 291. Havlík, T. (2014). Hydrometallurgy: Principles and applications, Elsevier. Kumar, R., R. Sakthivel, R. Behura, B. Mishra and D. Das (2015). “Synthesis of magnetite nanoparticles from mineral waste.” Journal of Alloys and Compounds 645: 398-404. Li, C., H. Sun, J. Bai and L. Li (2010). “Innovative methodology for comprehensive utilization of iron ore

.3390/met8010040. 9. Antonijević, M. M., Dimitrijević, M. D., Stevanović, Z. O., Serbula, S. M., & Bogdanovic, G. D. (2008). Investigation of the possibility of copper recovery from the flotation tailings by acid leaching. J. Hazard. Mater., 158(1), 23-34. DOI: 10.1016/j.jhazmat.2008.01.063. 10. Barton, I., Ahn, J., & Lee, J. (2018). Mineralogical and metallurgical study of supergene ores of the mike Cu-Au (-Zn) deposit, Carlin trend, Nevada. Hydrometallurgy, 176, 176-191. DOI: 10.1016/j.hydromet.2018.01.022. 11. Bulut, G. (2006). Recovery of copper and cobalt from

References [1] Lister, T. E., Wang, P., Anderko, A. (2014). Recovery of critical and value metals from mobile electronic enabled by electrochemical processing. Hydrometallurgy 149, 228-237. [2] Jha, M. K., Kumari, A., Panda, R., Kumar J. R., Yoo, K., Lee, J. Y. (2016). Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy 165, 2-26. [3] Xie, F., Zhang, T. A., Dreisinger, D., Doyle, F. (2014). A critical review on solvent extraction of rare earths from aqueous solutions. Mineral Engineering, 56, 10-28. [4] Kujawski, W., Pospiech, B. (2014

References Mishra, R. K., Rout, P. C., Sarangi, K. & Nathsarma, K. C. (2010). A comparative study on extraction of Fe(III) from chloride leach liquor using TBP, Cyanex 921 and Cyanex 923, Hydrometallurgy 104, 298-303. DOI:10.1016/j.hydromet.2010.07.003. Saji, J. & Reddy, M. L. P. (2001). Liquid-liquid extraction separation of iron(III) from titania wastes using TBP-MIBK mixed solvent system, Hydrometallurgy 61, 81-87. DOI: 10.1016/S0304-386X(01)00146-3. Hirato, T., Zhi-Chu, W., Yamada, Y., & Majima, H. (1992). Improvement of the stripping characteristics of

, Solvent Extraction and Precipitation. Hydrometallurgy 133, pp. 37-43. Gega, J., Gajda, B., Walkowiak, W. (2001). Separation of Co(II) and Ni(II) ions by Supported and Hybrid Liquid Membranes, Separation and Purification Technology, 22-23, pp. 551-558. Innocenzi, V., Ippolito, N.M., De Michelis, I., Prisciandaro, M. (2017). A Review Of The Processes and Lab-Scale Techniques For The Treatment Of Spent Rechargeable NimhBatteries. Journal of Power Sources, 362, pp. 202-218. Jha, M.K.; Kumari A.; Pand, R.; Kumar, J.R.; Yoo, K.; Lee, J.Y. (2016).Review On Hydrometallurgical

leaching of gold in cyanide solutions. Hydrometallurgy 44, 147-162. DOI:10.1016/S0304-386X(96)00039-4. Dicinoski, Greg W. & Gahan, Lawrence R., et. al. (2000). Application of the shrinking core model to the kinetics of extraction of gold(I), silver(I) and nickel(II) cyanide complexes by novel anion exchange resins. Hydrometallurgy 56, 323-336. DOI:10.1016/S0304-386X(00)00082-7. Chen, B., Hui, C.W. & Mckay, G. (2001). Film-Pore Diffusion Modeling for the Sorption of Metal Ions from Aqueous Effluents onto Peat. Water Res. 35, 3345-3356. DOI:10.1016/S0043

REFERENCES 1. Acosta M., Galleguillos P., Ghorbani Y., Tapia P., Contador Y., Velásquez A., Espoz C., Pinilla C. and Demergasso C., 2014 – Variation in microbial community from predominantly mesophilic to thermotolerant and moderately thermophilic species in an industrial copper heap bio-leaching operation, Hydrometallurgy , 150, 281-289. 2. Ashton P. J., Love D., Mahachi H., Dirks P. H. G. M., 2001 – An overview of the impact of mining and mineral processing operations on water resources and water quality in the Zambezi, Limpopo and Olifants catchments in

References BÁLINTOVÁ, M., LUPTÁKOVÁ, A.: Úprava kyslých banských vôd. Košice, Stavebná fakulta, Technická univerzita, 2012, 131 pp. (in Slovak). BRANDL, H., BOSSHARD, R., WEGMANN, M.: Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy, 59, 200, 319-326. DAOUD, J., KARAMANEV, D.: Formation of jarosite during Fe 2+ oxidation by Acidithiobacillus ferrooxidans . Minerals Eng., 19, 2006, 960-967. FOURNIER, D., LEMIEUX, R., COUILLARD, D.: Essential interactions between Thiobacillus ferrooxidans and heterotrophic

-ferrous, 89-95 (in Polish). Łętowski, F, (1975). Basic of hydrometallurgy. WNT Warszawa (in Polish). Dutrizac, J.E, (1984). The behavior of impurities during jarosite precipitation, Ed. Bautista R. G. "Hydrometallurgical process fundamentals" Part I, Plenum Press, New York and London, 125-169.