Search Results

1 - 10 of 153 items :

  • "humic acids" x
Clear All

References Anderson, M. A., Hung, A., Mills, D., Scott, M. S. (1995). Factors affecting the surface tension of soil solutions and solutions of humic acids. Soil Sci ., 160 , 111–116. Barančikova, G., Senesi, N., Brunetti, G. (1997). Chemical and spectroscopic characterization of humic acids isolated form different Slovak soil types. Geoderma , 78 , 251–266. Borgmark, A. (2005). Holocene climate variability and periodicities in south-central Sweden, as interpreted from peat humification analysis. Holocene , 15 (3), 387–395. Chen, Y., Senesi, N., Schnitzer

. & Huculak-Mączka, M., (2011). Evaluation of sorption properties of humic acids as a factor in determining the possibility of their use for fertilizer purpose, Przem. Chem., 90/5, 792-795 (in Polish). 21. Stevenson, F., J. (1994). Humus chemistry. Genesis, composition, reactions, John Wiley&Sons, New York. 22. Huculak-Mączka, M., Hoffmann, K., Skut, J. & Hoffmann J. (2010). Evaluation of humic substances content in selected raw materials and wastes, Proc. ECOpole, 4/2, 383-387 (in Polish). 23. Huculak-Mączka, M., Hoffmann, K. & Hoffmann, J. (2009). The use of selected

humic acids. Geoderma , 144 (1–2), 325–333. Cardoza, Y. J., Buhler, W. G. (2012). Soil organic amendment impacts on corn resistance to Helicoverpa zea : Constitutive or induced? Pedobiologia , 55 (6), 343–347. Chen, Y., Clapp, C. E., Magen, H. (2004). Mechanisms of plant growth stimulation by humic substances: The role of organo-iron complexes. Soil Sci. Plant Nutr ., 50 (7), 1089–1095. David, P. P., Nelson, P. V., Sanders, D. C. (1994). A humic acid improves growth of tomato seedling in solution culture. J. Plant Nutr ., 17 (1), 173–184. Domínguez, J

). Proline accumulation as a symptom of drought stress in maize: a tissue differentiation requirement. J. Exp. Bot., 39: 889-897. Canellas, L.P., Olivares, F.L., Okorokova-Façanha, A.L. & Façanha, A.R. (2002). Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence and plasma membrane H+-ATPase activity in maize roots. Plant Physiol., 130(4): 1951-1957. Carvalho, R.H.R., Galvão, E.L., Barros, J.Â.C., Conceição M.M. & Sousa E.M.B.D. (2012). Extraction, fatty acid profile and antioxidant activity of sesame extract (Sesamum indicum L

References Murray, C. A. & Parsons, S. (2004). Removal of NOM from drinking water: Fenton's and photo-Fenton's processes. Chemosphere. 54, 1017-1023. DOI: 10.1016/j.chemosphere.2003.08.040. Libecki, B. (2011). The effectiveness of humic acids coagulation with the use of cationic polyacrylamides. Water Science & Technology 63, 1944-1949. DOI: 10.2166/wst.2011.194 Wei, M. C., Wang, K. S., Hsiao, T. E., Lin, I. C., Wu, H. J., Wu, Y. L., Liu, P. H. & Chang, S. H. (2011). Effects of UV irradiation on humic acid removal by ozonation, Fenton and Fe 0 /air treatment

. Quantitatively predicting soil carbon across landscapes. In HARTEMINK, A. ‒ MCSWEENEY, K. (Eds) Soil Carbon . Heildelberg : Springer Cham. pp. 45‒57. ISBN 978-3-319-04083-7 NOVÁK, F. ‒ HRABAL, R. 2011. Quantitative 13C NMR spectroscopy of humic acids. In Chemické listy , vol. 105 , pp.752‒760. ONO, K. ‒ HIRAI, K. ‒ MORITA, S. ‒ OHSE, K. ‒ HIRADATE, S. 2009. Organic carbon accumulation processes on a forest floor during an early humification stage in a temperate deciduous forest in Japan: Evaluation of chemical composition changes by 13 C NMR and their decomposition rates

organic matter fraction and the method of preparation are presented in Table 2 . The carbon ratio of fulvic to humic acids (C HA / C FA ) was calculated. Figure 1 Scheme of sequential fractionation of soil organic matter Source: own study Table 2 Organic matter (organic carbon) fractions and extraction procedure Name and symbol of the fraction Extraction procedure Post decalcification fraction C DEC Extraction with 0.05 M H 2 SO 4 ; extraction time 24 h; m/V = 1/50; centrifugation (g = 4000 rpm) and filtration through a cellulose filter. The carbon in the solution was

interactions avec les ions mineraux. In Conference Proceedings de la Commission d’Hydrologie Appliquee de A.G.H.T.M. (pp. 3–10). l’Universite d’Orsay. 5. Schulten, H. R., Plage, B., & Schnitzer, M. (1991). A chemical structure for humic substances. Naturwissenschaften , 78 , 311–312. 6. Jerzykiewicz, M., Czechowski, F., Jezierski, A., & Drozd, J. (1999). Influence of ammonia and nitrogen dioxide on free radicals in humic acids derived from composts, soil, peat and brown coal. An EPR study. Humic Subst. Environ ., 1 (3/4), 21–26. 7. Pisarek, I., Głowacki, M., & Czernia, M

References 1. Zhan, Y., Lin, J., Qiu, Y., Gao, N. & Zhu, Z. (2011). Adsorption of humic acid from aqueous solution on bilayer hexadecyltrimethyl ammonium bromide-modified zeolite. Front.Environ. Sci. Engin. Chin. 5, 65-75. DOI: 10.1007/s11783-010- 0277-z. 2. Lesley, J., Flora, J.R.V., Park, Y., Badawy, M., Hazem, S. & Yoon, Y. (2012). Removal of natural organic matter from potential drinking water sources by combined coagulation and adsorption using carbon nanomaterials. Sep. Purif. Technol. 95, 64-72. DOI: 10.1016/j.seppur.2012.04.033. 3. Huang, W.J. & Yeh

hydrolysis and methylation of EUROSOIL humic acid samples – A key to their source. In Geoderma , vol. 150 , no. 1‒2, pp. 10‒22. DEBSKA, B. ‒ SOMBATHOVA, N. ‒ BANACH-SZOTT, M. 2009. Properties of humic acids of soil under different management regimes. In Polish Journal of Soil Science, vol. 42 , pp. 131‒138. ENEV, V. – POSPÍŠILOVÁ, L. – KLUČÁKOVÁ, M. – LIPTAJ, T. – DOSKOČIL, L. 2014. Spectral characterization of selected humic substances. In Soil and Water Research , vol. 9 , pp. 9‒17. GONZÁLES-PÉREZ, M. – TORRADO, V