Search Results

1 - 10 of 899 items :

  • "formalisation" x
Clear All

References [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics , 1(2):377-382, 1990. [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics , 1(1):41-46, 1990. [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics , 1(1):91-96, 1990. [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics , 1(1):107-114, 1990. [5] Czesław Bylinski. Binary operations. Formalized Mathematics , 1(1):175-180, 1990. [6] Czesław Bylinski. Finite

References [1] Jesse Alama. The vector space of subsets of a set based on symmetric difference. Formalized Mathematics , 16( 1 ):1-5, 2008. doi:10.2478/v10037-008-0001-7. [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics , 1( 2 ):377-382, 1990. [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics , 1( 1 ):41-46, 1990. [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics , 1( 1 ):91-96, 1990. [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences

References [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics , 1( 2 ):377-382, 1990. [2] Grzegorz Bancerek. Konig’s theorem. Formalized Mathematics , 1( 3 ):589-593, 1990. [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics , 1( 1 ):91-96, 1990. [4] Józef Białas. Group and field definitions. Formalized Mathematics , 1( 3 ):433-439, 1990. [5] Czesław Bylinski. Binary operations. Formalized Mathematics , 1( 1 ):175-180, 1990. [6] Czesław Bylinski. The complex numbers. Formalized Mathematics , 1( 3 ):507-513, 1990. [7] Czesław

References [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics , 1( 2 ):377-382, 1990. [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics , 1( 1 ):41-46, 1990. [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics , 1( 1 ):107-114, 1990. [4] Czesław Byliński. Partial functions. Formalized Mathematics , 1( 2 ):357-367, 1990. [5] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. Formalized Mathematics

References [1] Grzegorz Bancerek. Konig’s theorem. Formalized Mathematics , 1( 3 ):589-593, 1990. [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics , 1( 1 ):41-46, 1990. [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics , 1( 1 ):91-96, 1990. [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics , 1( 1 ):107-114, 1990. [5] Czesław Bylinski. Binary operations. Formalized Mathematics , 1( 1 ):175-180, 1990. [6] Czesław Bylinski

References [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics , 1( 2 ):377-382, 1990. [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics , 1( 1 ):41-46, 1990. [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics , 1( 1 ):91-96, 1990. [4] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics , 1( 2 ):421-427, 1990. [5] Grzegorz Bancerek. K¨onig’s lemma. Formalized Mathematics , 2( 3 ):397-402, 1991. [6] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees

References [1] Kenichi Arai, Hiroyuki Okazaki, and Yasunari Shidama. Isomorphisms of direct products of finite cyclic groups. Formalized Mathematics , 20(4):343-347, 2012. doi:10.2478/v10037-012-0038-5. [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics , 1(2):377-382, 1990. [3] Grzegorz Bancerek. Monoids. Formalized Mathematics , 3(2):213-225, 1992. [4] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics , 1(1):41-46, 1990. [5] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics , 1(1):91-96, 1990

References [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. [3] E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems. Lecture Notes in Computer Science, 537:2-21, 1991. [4] E. Biham and A. Shamir. Differential cryptanalysis of the full 16-round DES. Lecture Notes in Computer Science, 740:487-496, 1993. [5] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55

. Fundamenta Informaticae , 51:103–119, 2002. [3] Adam Grabowski. Automated discovery of properties of rough sets. Fundamenta Informaticae , 128:65–79, 2013. doi:10.3233/FI-2013-933. [4] Adam Grabowski. Lattice theory for rough sets – a case study with Mizar. Fundamenta Informaticae , 147(2–3):223–240, 2016. doi:10.3233/FI-2016-1406. [5] Adam Grabowski. Formalization of generalized almost distributive lattices. Formalized Mathematics , 22( 3 ):257–267, 2014. doi:10.2478/forma-2014-0026. [6] Adam Grabowski. Basic properties of rough sets and rough membership function

References [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics , 1(1):41-46, 1990. [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics , 1(1):91-96, 1990. [3] Czesław Bylinski. Binary operations. Formalized Mathematics , 1(1):175-180, 1990. [4] Czesław Bylinski. The complex numbers. Formalized Mathematics , 1(3):507-513, 1990. [5] Czesław Bylinski. Binary operations applied to finite sequences. Formalized Mathematics , 1(4):643-649, 1990. [6] Czesław Bylinski. Functions and their basic properties