Search Results

1 - 10 of 653 items :

  • "finite element methods" x
Clear All

References Adams, R. and Fournier, J. (2003). Sobolev Spaces. Second Edition , Academic Press, Cambridge, MA. An, N. and Chen, H. (2014). A partially penalty immersed interface finite element method for anisotropic elliptic interface problems, Numerical Methods for Partial Differential Equations 30 (6): 1984–2028. Anitescu, C. (2017). Open source 3D Matlab isogeometric analysis code, https://sourceforge.net/u/cmechanicsos/profile/ . Babuška, I. (1970). The finite element method for elliptic equations with discontinuous coefficients, Computing 5 (3): 207

). Three-dimensional induction logging problems, Part 2: A finite-difference solution, Geophysics 67(2): 484-491. Pardo, D., Demkowicz, L., Torres-Verd´ın, C. and Paszynski, M. (2006). Two-dimensional high-accuracy simulation of resistivity logging-while-drilling (LWD) measurements using a self-adaptive goal-oriented hp finite element method, SIAM Journal on Applied Mathematics 66(6): 2085-2106. Pardo, D., Demkowicz, L., Torres-Verd´ın, C. and Paszynski, M. (2007). A self-adaptive goal-oriented hp-finite element method with electromagnetic applications, Part II

, Physical Review E 92 : 053202. Karczewska, A., Szczeciński, M., Rozmej, P., and Boguniewicz, B. (2016). Finite element method for stochastic extended KdV equations, Computational Methods in Science and Technology 22 (1): 19–29. Kim, J.W., Bai, K.J., Ertekin, R.C. and Webster, W.C. (2001). A derivation of the Green–Naghdi equations for irrotational flows, Journal of Engineering Mathematics 40 : 17–42. Marchant, T. and Smyth, N. (1990). The extended Korteweg–de Vries equation and the resonant flow of a fluid over topography, Journal of Fluid Mechanics 221 (1): 263

References 1. Stomatološki fakultet. Stomatološki materijali knjiga 2: Beograd; 2012. 2. Ming-Lun Hsu, Chih-Ling Chang, Application of Finite Element Analysis in Dentistry, Finite Element Analysis, ed. David Moratal, 2010. 3. Geng J, Yan W, Xu W (Eds.). Application of the Finite Element Method in Implant Dentistry, ISBN: 978-3-540- 73763-6, Springer, 2008. 4. Duygu Koc, Arife Dogan, and Bulent Bek, Bite Force and Influential Factors on Bite Force Measurements: A Literature Review. Eur J Dent, 2010;4:223-232. 5. Olmsted MJ, Wall CE, Vinyard CJ. Human bite force

References Adamiec-Wójcik I. and Brzozowska L. (2013): Homogenous transformations in dynamics of off-shore slender structures. - Dynamical Systems Theory, Łódź: Press of Łódź University of Technology, pp.307-316. Adamiec-Wójcik I., Brzozowska L. and Wojciech S. (2013): Modification of the rigid finite element method in modeling dynamics of lines and ropes. - The Archive of Mechanical Engineering, vol.LX, No.3, pp.409-429. Adamiec-Wójcik I., Wittbrodt E. and Wojciech S. (2012): Rigid finite element in modelling of bending and longitudinal vibrations of ropes

References [1] Adamiec-Wójcik I., Fałat P., Maczyński A. and Wojciech S. 2009): Load stabilisation an a-frame - a type of an offshore crane . – Archive of Mechanical Engineering, vol.56, No.1, pp.37-59. [2] Drąg Ł. (2017): Modelling of lines, risers and cranes by means of the rigid finite element method . – Bielsko-Biała: University of Bielsko-Biała Press. [3] Kong X., Qi Z. and Wang G. (2015): Elastic instability analysis for slender lattice-boom structures of crawler cranes . – Journal of Constructional Steel Research, vol.115, pp.206-222. [4] Nowak P

References [1] Y. Achdou and O. Pironneau, Computational methods for option pricing, Society for Industrial and Applied Mathematics, (2005). [2] Z. Al-Zhour, M. Barfeie, F. Soleymani, and E. Tohidi, A computational method to price with transaction costs under the nonlinear Black-Scholes model, CMES-Comp Model. Eng., 124 (2020), 61–78. [3] A. Andalaft-Chacur, M. M. Ali and J. G. Salazar, Real options pricing by the finite element method, Comput. Math. Appl., 61 (2011), pp. 2863–2873. [4] F. Black and M. Scholes, The pricing of options and corporate liabilities, J

.123-138. Kamiński M. (2013): The Stochastic Perturbation Method for Computational Mechanics. - Chichester: Wiley. Kamiński M. and Solecka M. (2013). Optimization of the aluminium and steel telecommunication towers using the generalized perturbation-based Stochastic Finite Element Method. - Journal of Finite Elements Analysis and Design, vol.63, No.1, pp.69-79. Kamiński M. and Strąkowski M. (2013): On the least squares stochastic finite element analysis of the steel skeletal towers exposed to the fire. - Archives of Civil and Mechanical Engineering, vol.13, pp.242

.—GÁLIK, G. : Modal Analysis of the Power Lines by Finite Element Methods, rev. EE časopis pre elektrotechniku, elektroenergetiku, informačné a komunikačné technológie (2014), Trenčín. [14] FECKO, Š.—REVÁKOVÁ, D.—VARGA, L.—LAGO, J.—ILENIN, S. : Vonkajšie elektrické vedenia, Renesans, s.r.o., Bratislava, 2010. [15] BINDZÁR, M. : Stavová rovnica — výpočet montážnych tabuliek, Bratislava, 2015. [16] FECKO, Š. et al : Elektrické siete: Vonkajšie silové vedenia, STU v Bratislave, Bratislava, 1990. [17] MURÍN, J.—HRABOVSKÝ, J.—KUTIŠ, V. : Metóda Konečných prvkov — Vybrané

Mathematical Theory of Finite Element Methods . Springer-Verlag, New York, 2002. [7]ČUNDERLÍ K, R.—MIKULA, K.—MOJZEŠ, M.: Numerical solution of the linearized fixed gravimetric boundary-value problem ,J. Geod. 82 (2008), 15–29. [8]ČUNDERLÍ K, R.—MIKULA, K.: Direct BEM for high-resolution gravity field modelling , Stud. Geophys. Geod. 54 (2010), no. 2, 219–238 [9]ČUNDERLÍK,R.—MIKULA, K.—ŠPIR R.: An oblique derivative in the direct BEM formulation of the fixed gravimetric BVP ,IAG Symp. 137 (2012), 227–231. [10] FAŠKOVÁ, Z.: Numerical Methods for Solving Geodetic