Search Results

1 - 6 of 6 items :

  • "extreme learning machine (ELM)" x
Clear All
Assessing the suitability of extreme learning machines (ELM) for groundwater level prediction

Abstract

Fluctuation of groundwater levels around the world is an important theme in hydrological research. Rising water demand, faulty irrigation practices, mismanagement of soil and uncontrolled exploitation of aquifers are some of the reasons why groundwater levels are fluctuating. In order to effectively manage groundwater resources, it is important to have accurate readings and forecasts of groundwater levels. Due to the uncertain and complex nature of groundwater systems, the development of soft computing techniques (data-driven models) in the field of hydrology has significant potential. This study employs two soft computing techniques, namely, extreme learning machine (ELM) and support vector machine (SVM) to forecast groundwater levels at two observation wells located in Canada. A monthly data set of eight years from 2006 to 2014 consisting of both hydrological and meteorological parameters (rainfall, temperature, evapotranspiration and groundwater level) was used for the comparative study of the models. These variables were used in various combinations for univariate and multivariate analysis of the models. The study demonstrates that the proposed ELM model has better forecasting ability compared to the SVM model for monthly groundwater level forecasting.

Open access
Extreme Learning Machine for the Predictions of Length of Day

Abstract

This work presents short- and medium-term predictions of length of day (LOD) up to 500 days by means of extreme learning machine (ELM). The EOP C04 time-series with daily values from the International Earth Rotation and Reference Systems Service (IERS) serve as the data basis. The influences of the solid Earth and ocean tides and seasonal atmospheric variations are removed from the C04 series. The residuals are used for training of the ELM. The results of the prediction are compared with those from other prediction methods. The accuracy of the prediction is equal to or even better than that by other approaches. The most striking advantages of employing ELM instead of other algorithms are its noticeably reduced complexity and high computational efficiency.

Open access
Water demand forecasting using extreme learning machines

Abstract

The capacity of recently-developed extreme learning machine (ELM) modelling approaches in forecasting daily urban water demand from limited data, alone or in concert with wavelet analysis (W) or bootstrap (B) methods (i.e., ELM, ELMW, ELMB), was assessed, and compared to that of equivalent traditional artificial neural network-based models (i.e., ANN, ANNW, ANNB). The urban water demand forecasting models were developed using 3-year water demand and climate datasets for the city of Calgary, Alberta, Canada. While the hybrid ELMB and ANNB models provided satisfactory 1-day lead-time forecasts of similar accuracy, the ANNW and ELMW models provided greater accuracy, with the ELMW model outperforming the ANNW model. Significant improvement in peak urban water demand prediction was only achieved with the ELMW model. The superiority of the ELMW model over both the ANNW or ANNB models demonstrated the significant role of wavelet transformation in improving the overall performance of the urban water demand model.

Open access
Comparison of Prototype Selection Algorithms Used in Construction of Neural Networks Learned by SVD

Abstract

Radial basis function networks (RBFNs) or extreme learning machines (ELMs) can be seen as linear combinations of kernel functions (hidden neurons). Kernels can be constructed in random processes like in ELMs, or the positions of kernels can be initialized by a random subset of training vectors, or kernels can be constructed in a (sub-)learning process (sometimes by k-means, for example). We found that kernels constructed using prototype selection algorithms provide very accurate and stable solutions. What is more, prototype selection algorithms automatically choose not only the placement of prototypes, but also their number. Thanks to this advantage, it is no longer necessary to estimate the number of kernels with time-consuming multiple train-test procedures. The best results of learning can be obtained by pseudo-inverse learning with a singular value decomposition (SVD) algorithm. The article presents a comparison of several prototype selection algorithms co-working with singular value decomposition-based learning. The presented comparison clearly shows that the combination of prototype selection and SVD learning of a neural network is significantly better than a random selection of kernels for the RBFN or the ELM, the support vector machine or the kNN. Moreover, the presented learning scheme requires no parameters except for the width of the Gaussian kernel.

Open access
Neural network based identification of hysteresis in human meridian systems

Abstract

Developing a model based digital human meridian system is one of the interesting ways of understanding and improving acupuncture treatment, safety analysis for acupuncture operation, doctor training, or treatment scheme evaluation. In accomplishing this task, how to construct a proper model to describe the behavior of human meridian systems is one of the very important issues. From experiments, it has been found that the hysteresis phenomenon occurs in the relations between stimulation input and the corresponding response of meridian systems. Therefore, the modeling of hysteresis in a human meridian system is an unavoidable task for the construction of model based digital human meridian systems. As hysteresis is a nonsmooth, nonlinear and dynamic system with a multi-valued mapping, the conventional identification method is difficult to be employed to model its behavior directly. In this paper, a neural network based identification method of hysteresis occurring in human meridian systems is presented. In this modeling scheme, an expanded input space is constructed to transform the multi-valued mapping of hysteresis into a one-to-one mapping. For this purpose, a modified hysteretic operator is proposed to handle the extremum-missing problem. Then, based on the constructed expanded input space with the modified hysteretic operator, the so-called Extreme Learning Machine (ELM) neural network is utilized to model hysteresis inherent in human meridian systems. As hysteresis in meridian system is a dynamic system, a dynamic ELMneural network is developed. In the proposed dynamic ELMneural network, the output state of each hidden neuron is fed back to its own input to describe the dynamic behavior of hysteresis. The training of the recurrent ELM neural network is based on the least-squares algorithm with QR decomposition.

Open access
Application of SARIMA model to forecasting monthly flows in Waterval River, South Africa

-term runoff study using SARIMA and ARIMA models in the United States. Meteorological Applications. Vol. 22. Iss. 3 p. 592–598. W ang J., D u Y.H., Z hang X.T. 2008. Theory and application with seasonal time series. 1 st ed. Nankai. Nankai University Press. Y adav B., C h S., M athur S., A damowski J. 2017. Assessing the suitability of extreme learning machines (ELM) for groundwater level prediction. Journal of Water and Land Development. No. 32 p. 103–112. DOI 10.1515/jwld-2017-0012. Y ang T., A sanjan A.A., W elles E., G ao X., S orooshian S

Open access