Search Results

1 - 10 of 30 items :

Clear All
POSSIBILITY OF THE SPECTROPHOTOMETRIC DETERMINATION OF EUROPIUM BY MEANS OF ARSENAZO III

emission spectrometry Part III. Europium. Spectrochim. Acta, 51B, 1996, 733-768. FANG, G. Z., PAN, J. M., ZHOU, W. L., XU, B. L.: Study on the Spectrophotometric Determination of Rare Earths with a New Chromogenic Reagent Dibromo-pmethyl- chlorosulfonazo (DBMCSA). Chinese Chem. Lett., 10, 1999, 851-854. FU, X. T., WANG, C. M., ZHANG, Y. S.: Polarographic study of the Eu(III)- triethylenetetraaminehexaacetic acid complex and determination of europium by oscillopolarography. Anal. Chim. Acta, 272, 1993, 221-225. HEISERMAN, D

Open access
The Recovery of Yttrium and Europium Compounds from Waste Materials

Abstract

Rare earth metals including yttrium and europium are one of several critical raw materials, the use of which ensures the development of the so-called high technology. The possibility of their recovery in Europe is limited practically only to secondary materials such as phosphogypsum and electronic waste.

The article presents the results of our research concerning the development of recovery technology of yttrium and europium from luminophore CRT used lamps. It describes the principle of separation of elements and the test results of cleaning the concentrate. It was shown that the costs of preparing the concentrate according to the proposed technology are lower than the phosphogypsum processing technology and the composition of the resulting product does not contain hazardous substances.

Open access
Luminescence Properties and Decay Kinetics of Mn2+ and Eu3+ Co-Dopant Ions In MgGa2O4 Ceramics

Section B: Beam Interactions with Materials and Atoms , 435, 31–37. 24. Kravets, O.P., Lys, R.M., Tsvetkova, O.V., Luchechko, A.P., & Pavlyk, B.V. (2018). Thermally stimulated luminescence and thermally stimulated depolarization currents in MgGa 2 O 4 spinels. Journal of Physical Studies, 22(1) , 1602. 25. Luchechko, A., Kravets, O., & Syvorotka, I.I. (2017). Optical and luminescence spectroscopy of zinc gallate phosphors codoped with manganese and europium ions. Spectroscopy Letters, 50(7) , 404–410. 26. Luchechko, A., Kravets, O., Tsvetkova, O

Open access
Processes and Technologies for the Recycling of Spent Fluorescent Lamps

). Mercury speciation in fluorescent lamps by thermal release analysis. Waste Management 23, 879-886. DOI: 10.1016/SO956- -053X(03)00089-8. 6. Rabah, M.A. (2004). Recovery of aluminum, nickel-copper alloys and salts from spent fluorescent lamps. Waste Management 24, 119-126. DOI:10.1016/j.wasman.2003.07.001. 7. Rabah, M.A. (2008). Recyclables recovery of europium and yttrium metals and some salts from spent fluorescent lamps. Waste Management 28, 318-325. DOI: 10.1016/j.wasman. 2007.02.006. 8. Hirajima, T., Sasaki, K

Open access
Trace elements and REE enrichment at Seboah Hill, SW Egypt

. Geochemistry and age of the complex of alkaline met somatic rocks and carbonadoes of the Gremyakha–Vyrmes Massif, Kola Peninsula. Geochemistry International. 50 (12), 975-987. Singh, A.K., & Vallinayagam, G. (2009). Radioactive element distribution and rare-metal mineralization in anorogenic acid volcano-plutonic rocks of the Neoproterozoic Malani Felsic Province, Western Peninsular India. Journal of the Geological Society of India, 73 , 837-853. DOI: https://doi.org/10.1007/s12594-009-0067-z . Towell, D.G., Spirn, R.V., & Winchester, J.W. (1969). Europium

Open access
Calculation Of The Judd - Ofelt Parameters Of The ZnAl2O4: Eu3+

Abstract

Zinc aluminate (ZnAl2O4) doped with rare earth metal ions has been investigated most frequently because of the unique luminescent properties resulting from its stability and high emission quantum yields. The present work is devoted to calculate the Judd-Ofelt parameters (Ω2, Ω4 and Ω6) of the trivalent europium doped in ZnAl2O4 spinel, the quality factor (Q) and the branching ratio (β).

Open access
Calculation Of The Crystal Field Parameters For Eu3+ Doped In SrAl2O4 And SrIn2O4 Spinels

Abstract

Strontium aluminate (SrAl2O4) and the indium aluminate (SrIn2O4) spinels have been proven to be efficient host materials, which offer the possibility of generating broadband emission after doping with rare earth trivalent ions. The present work is devoted to the calculation of the crystal field parameters and the energy levels of the trivalent europium doped in SrAl2O4 and SrIn2O4 spinels, using the superposition model of the crystal field. Using the intrinsic parameters for Eu3+-O2− bonds, and the geometry structure of the each crystal, we modeled the CFPs and simulated the low-lying energy levels schemes. The obtained results are compared with the experimental data and discussed.

Open access
Luminescent homo- and hetero-metallic hybrid molecular materials constructed by covalent grafting

Abstract

In this paper, 3-(triethoxysilyl)-propyl isocyanate (abbreviated as TESPIC) was modified by ethylparaben (EPB) to produce corresponding organic-inorganic monomers (EPB-TESPIC) with two components equipped with covalent bonds, which not only can coordinate to RE ions (Tb3+ and Eu3+) but also act as a sol-gel precursor. Luminescent hybrid materials consisting of terbium-europium complex, covalently bonded to silica-based network, have been obtained in situ via a sol-gel approach. Proton nuclear magnetic resonance spectroscopy (1HNMR) and Fourier transform infrared spectroscopy (FT-IR) were applied to characterize the structure of EPB-TESPIC. UV-visible, phosphorescence, and luminescence spectra were obtained to characterize the photophysical properties of the obtained hybrid material. Through co-hydrolysis and polycondensation, Tb3+ and Eu3+ can be introduced into the same organic-inorganic hybrid monomer, forming Si-O backbones. The experimental results show that the strong luminescence of rare-earth ions substantiates the optimum energy match and effective intramolecular energy transfer between the triplet state energy of coordination complex and the emissive energy level of the rare-earth ions. The hybrid material systems are expected to have potential applications in photophysical sensors.

Open access
Reprocessability of molybdenum and magnesia based inert matrix fuels

Abstract

This work focuses on the reprocessability of metallic 92Mo and ceramic MgO, which is under investigation for (Pu,MA)-oxide (MA = minor actinide) fuel within a metallic 92Mo matrix (CERMET) and a ceramic MgO matrix (CERCER). Magnesium oxide and molybdenum reference samples have been fabricated by powder metallurgy. The dissolution of the matrices was studied as a function of HNO3 concentration (1-7 mol/L) and temperature (25-90°C). The rate of dissolution of magnesium oxide and metallic molybdenum increased with temperature. While the MgO rate was independent of the acid concentration (1-7 mol/L), the rate of dissolution of Mo increased with acid concentration. However, the dissolution of Mo at high temperatures and nitric acid concentrations was accompanied by precipitation of MoO3. The extraction of uranium, americium, and europium in the presence of macro amounts of Mo and Mg was studied by three different extraction agents: tri-n-butylphosphate (TBP), N,Nʹ-dimethyl-N,Nʹ-dioctylhexylethoxymalonamide (DMDOHEMA), and N,N,N’,N’- -tetraoctyldiglycolamide (TODGA). With TBP no extraction of Mo and Mg occurred. Both matrix materials are partly extracted by DMDOHEMA. Magnesium is not extracted by TODGA (D < 0.1), but a weak extraction of Mo is observed at low Mo concentration.

Open access
Sol-gel-derived hybrid materials multi-doped with rare-earth metal ions

Abstract

Four different hybrid organic-inorganic materials based on TiO2-SiO2 matrices with organic additives and doped with rare-earth metal ions (III) from the group of europium, cerium, terbium, neodymium, dysprosium and samarium, were synthesized by sol-gel method. Tetraethyl orthosilicate, titanium (IV) isopropoxide and organic compounds, such as butyl acrylate, butyl methacrylate, ethyl acetoacetate, ethylene glycol dimethacrylate, ethyl acetate, propylene carbonate, organic solvents and certain inorganic salts were used in the synthesis. The inorganic part of the sols, which were used in the synthesis of all the hybrid materials, was prepared separately and then the organic parts were added. The materials obtained were aged for three weeks at room temperature and then heated in an electric oven for three hours at temperatures of 80 °C–150 °C. Scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM/EDX); X-ray diffraction (XRD); Fourier transform infrared spectroscopy (KBr technique); 29Si magic-angle spinning nuclear magnetic resonance; and fluorescence spectroscopy were used for the examination of morphology, microstructure and luminescence properties, respectively. Photoluminescence properties with relatively intense narrow emission lines of Tb, Eu, Dy, Nd, Sm respectively to the RE-ions doping, were observed for all the hybrid materials.

Open access