Search Results

1 - 10 of 933 items :

Clear All

, Hubenova A, Stankova E, Gesheva M, Loukova A. The role of methanol, isopropanol and acetone as possible markers for chronic ethanol consumption - preliminary results. In: Programme and abstracts EAPCCT 26th international congress; 2006 Apr 19-22; Prague, Czech Republic. Prague: European association of poisons centres and clinical toxicologists, p. 165. 15. Monte WC. Methanol: a chemical Trojan horse as the root of the inscrutable U. Med Hypotheses. 2010;74(3):493-6. 16. Kavet R, Nauss KM. The toxicity of inhaled methanol vapors. Crit Rev Toxicol. 1990;21( 1):21-50. 17

References Boleda MD, Julia P, Moreno A, Pares X. Role of Extrahepatic Alcohol-Dehydrogenase in Rat Ethanol-Metabolism. Arch Biochem Biophys. 1989;274:74-81. Caldwell J, Dring LG, Williams RT. Metabolism of [C-14]Methamphetamine in Man, Guinea-Pig and Rat. Biochem J. 1972;129:11-22. Dostalek M, Hadasova E, Hanesova M, et al. Feet of methamphetamine on the pharmacokinetics of dextromethorphan and midazolam in rats. Eur J Drug Metab Pharmacokinet. 2005;30:195-201. Dostalek M, Jurica J, Pistovcakova J, et al. Effect of methamphetamine on cytochrome P450 activity

-625. Gyamerah, M. & Glover, J. (1996). Production of ethanol by continuous fermentation and liquid-liquid extraction, J. Chem. Technol. Biotechnol. 66, 145-152. Bai, F.W., Anderson, W.A. & Moo-Young, M. (2008). Ethanol fermentation technologies from sugar and starch feedstocks Biotechnology Advances 26, 89-105. DOI:10.1016/j.biotechadv.2007.09.002. Lipnizki, F. (2010). Membrane process opportunities and challenges in the bioethanol industry, Desalination , 250, 1067-1069. DOI:10.1016/j.desal.2009.09.109. Lawson, K.W. & Lloyd, D.R. (1997). Membrane distillation, J. Membr

. Grzybek, A., Gradziuk, P. & Kowalczyk, K. (2001). Słoma – energetyczne paliwo. Wieś Jutra . 15. ISBN: 83-88368-19-2. 12. Talebnia, F., Karakashev, D. & Angelidaki I. (2010). Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresource Technol. 13, 101, 4744–4753. DOI: 10.1016/j.biortech.2009.11.080. 13. Passoth, V., Tabassum, M.R., Nair, H.A.S., Olstorpe, M., Tiukova, I. & Ståhlberg J. (2013). Enhanced ethanol production from wheat straw by integrated storage and pretreatment (ISP). Enzyme and Microbial Technol. 2

LITERTURE CITED 1. Song, S.Q., Zhou, W.J., Zhou, Z.H., Jiang, L.H., Sun, G.Q., Xin, Q., Leontidis, V., Kontou, S. & Tsiakaras, P. (2005). Direct ethanol PEM fuel cells: The case of platinum based anodes. Int. J. Hydrogen Energy 30, 995–1001. DOI: 10.1016/j.ijhydene.2004.11.006. 2. Barbosa, A.F.B., Oliveira, V.L., van Drunen, J. & Tremiliosi-Filho, G. (2015). Ethanol electro-oxidation reaction using a polycrystalline nickel electrode in alkaline media: Temperature influence and reaction mechanism. J. Electroanal. Chem. 746, 31–38. DOI: 10.1016/j.jelechem.2015

References Spivey, J. J. (1987). Complete catalytic oxidation of volatile organics. Ind. Eng. Chem. Res. , 26 (11), 2165-2180. DOI: 10.1021/ie00071a001. Wu, C-W., Chen, R-H., Pu, J-Y. & Lin, T-H. (2004). The influence of air-fuel ratio on engine performance and pollutant emission of an SI engine using ethanol - gasoline - blended fuels. Atmospheric Environment , 38, 7093-7100. DOI: 10.1016/j.atmsenv.2004.01.058. Guerrieri, D. A., Caffrey, P. J. & Rao, V. (1995). Investigation into the vehicle exhaust emissions of high percentage ethanol blends. SAE Paper

References Optimization of bio-ethanol autothermal reforming and carbon monoxide removal processes / Markova D., Bažbauers G., Valters K., Rochlitz L., Alhucema Arias R., Weuffen C. // Journal of Power Sources . - 193. Issue 1 (2009). P.9-16. Markova D., Valters K., Bažbauers G. Reforming of bioethanol to hydrogen for use in fuel cell cogeneration plants // The Scientific Proceedings of Riga Technical University. 13th series, Environment and climate technologies. - 1th volume (2008), P.61-67. Markova D., Bažbauers G. Comparison of ethanol steam and autothermal

removed from the market due to safety concerns, mainly anaphylaxis issues. 12 Ethanol substituted chymopapaine as the chemical basis of the interventional chemonucleolysis procedures lately. 13 , 14 , 15 On the contrary to the chymopapaine, pure alcohol did not cause allergic reactions. There were however significant drawbacks linked to the ethanol utilization with uncontrolled leaks of highly liquid non-radio opaque chemical. 12 DiscoGel ® substance, an ethanol based derivate with ethyl cellulose (Gelscom ® , France), used in our study, replaced pure alcohol by

References 1. Mulliken JB, Glowacki J. Hemangiomas and vascular malformations in infants and children: a classification based on the key driver characteristics. Plast Reconstr Surg 1982; 69: 412-22. 2. Lowe LH, Marchant TC, Rivard DC, Scherbel AJ. Vascular malformations: classification and terminology the radiologist needs to know. Semin Roentgenol 2012; 47: 106-17. 3. Pekkola J, Lapalainen K, Voula P, Salminen Kloockars T, Pitkeranta A. Head and neck malformationis: results of ethanol sclerotherapy. AJNR Am J Neuroradiol 2013; 34: 198-204. 4. Hyodoh H, Hori M

References APTE, V. B. Effect of scale and fuel type on the charakteristics of pool fires for fire fighting training. In Fire Safety Journal , 1998, 31, pp. 283-296. Shintre Parag, Vasudevan Raghavan. Experimental invegistigation of burning rates of pure ethanol and ethanol blend fuel. In Combustion and Flame , 2008, 156, pp. 997-1005. Atsushi Nakakuki. Heat Transfer Mechanisms in Liquid Pool Fires. In Fire Safety Journal 1995, 23, Elsevier Science Limited Printed in Northen Ireland, pp.339-363. WANG, Z,-X. A three layer model for oil tank fires. In Second In