Search Results

1 - 10 of 9,907 items :

Clear All

Management. Survey Report: A Study by the Society for Human Resource Management. Retrieved from . Bianchi, C., & Montemaggiore, G.B. (2008). Enhancing strategy design and planning in public utilities through dynamic balanced scorecard: insights from project in a city water company. System Dynamics Review, 24 (2), 175-213. doi: 10.1002/sdr.395. Bontis, N. (2001). Assessing knowledge assets: a review of the models used to measure intellectual

REFERENCES Bazykin, A. D. (1998). Nonlinear Dynamics of Interacting Populations , World Scientific, Singapore. 193 pp. Britton, N. F. (2005). Essential Mathematical Biology . Springer Undergraduate Mathematics Series. Springer. 335 pp. Edelstein-Keshet, L. (2005). Mathematical Models in Biology . SIAM Classics in Applied Mathematics. 184 pp. Gikhman, I. I., Skorokhod, A. V. (1972). Stochastic differential equations . Springer-Verlag, Berlin, Heidelberg. 356 pp. Lotka, A. J. (1925). Elements of Physical Biology. Baltimore, Williams and Wilkins. 460 pp

-779. [8] Forrester, J.W., 1961. Industrial Dynamics. New York: Wiley. [9] Holzinger, A., Emberger, W., Wassertheurer, S., Neal, L., 2008. Design, Development and Evaluation of Online Interactive Simulation Software for Learning Human Genetics. Elektrotechnik & Informationstechnik, 125(5), pp.190-196. [10] Kothari, S., Peck, T., Zeng, J., Oblea, F., Votaw, A., E, Dispoto, G., 2015. Simulation as a Cloud Service for Short-Run High Throughput Industrial Print Production Using a Service Broker Architecture. Simulation Modelling Practice and Theory, 58, pp.115-139. [11

References Adler, R. (1997). Superprocesses and plankton dynamics, Monte Carlo Simulation in Oceanography: Proceedings of the ‘Aha Huliko'a Hawaiian Winter Workshop, Manoa, HI , pp. 121-128. Aldous, D. (1999). Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists, Bernoulli   5 (1): 3-48. Arino, O. and Rudnicki, R. (2004). Phytoplankton dynamics, Comptes Rendus Biologies   327 (11): 961-969. Clark, P. and Evans, F. (1954). Distance to nearest neighbor as a measure of spatial

Connecting, American Management Association. Scheef, D., Thielfoldt, D., (n.d.) “Engaging Multiple Generations among Your Workforce” retrieved at, [accessed at March 5, 2018]. Society for Human Resource Management, 2011, Intergenerational Conflict in the Workplace. STERMAN, J. D. (2002) All Models are Wrong: Reflections on Becoming a Systems Scientist. System Dynamics Review, 18, 501-531. Wallace, A. F.C. (1956

.), Mathematical Morphology and Its Application to Image Processing , Kluwer Academic Publishers, Dordrecht, pp.69-76. Burry, K. V. (1975). Statistical Methods in Applied Science , John Wiley & Sons, New York, NY. Haris, K., Efstratiadis, S. N., Maglaveras, N. and Katsaggelos, A.K. (1998). Hybrid image segmentation using watersheds and fast region merging, IEEE Transactions on Image Processing   7 (12): 1684-1699. Haris, K., Efstratiadis, S. N. and Maglaveras, N. (2001). Hierarchical image segmentation based on contour dynamics, Proceedings of the International Conference on

References Bockermann, A., Meyer, B., Omannc, I. & Spangenberg J.H. (2005). Modelling sustainability: comparing an econometric (PANTA RHEI) and a system dynamics model (SuE). Journal of Policy Modeling, 27(2), 189-210, <>. 2004.11.002 Elshorbagy, A., Jutla, A. & Barbour L. (2005). System dynamics approach to assess the sustainability of reclamation of disturbed watersheds. Canadian Journal of Civil Engineering, 32 (1),144-158, Fischer, D., Sonka, S.T. & Westgren R.E. (2003). Visualization and

References 1. Azhaginiyal, A., Umadevi, G. (2014) System Dynamics Simulation Modeling of Transport, Energy and Emissions Interactions. Civil Engineering and Architecture , 2(4), pp. 149-165. 2. Borshchev, A. (2013) The Big Book of Simulation Modeling: Multimethod Modeling with Anylogic 6 . AnyLogic North America, Lisle, IL. 3. de Jong, G., Gunn, H.F., Walker, W. (2004) National and international freight transport models: an overview and ideas for further development. Transport Reviews , 24(1), pp. 103-124. 4. Herazo-Padilla, N., Montoya-Torres, J.R., Nieto

conditions: A closed form solution, Journal of Optimization Theory and Applications 88(3): 503-539. Glizer, V.Y. (1997). Optimal planar interception with fixed end conditions: Approximate solutions, Journal of Optimization Theory and Applications 93(1): 1-25. Glizer, V.Y. (1999). Homicidal chauffeur game with target set in the shape of a circular angular sector: Conditions for existence of a closed barrier, Journal of Optimization Theory and Applications 101(3): 581-598. Glizer, V.Y. and Turetsky, V. (2008). Complete solution of a differential game with linear dynamics and

Rheology , Kluwer Academic Publ., 1986. [11] JOHNSON D.L., Recent Developments in the Acoustic Properties of Porous Media , [in:] D. Sette (ed.), Frontiers in Physical Acoustics, Proceedings of the International School of Physics “Enrico Fermi”, Course 93, 1986, 255–290. [12] KUBIK J., CIESZKO M., KACZMAREK M., Basic Dynamics of Saturated Porous Media , Biblioteka Mechaniki Stosowanej, Seria A. Monografie (in Polish), 2000. [13] LEWIS R.W., SCHREFLER B.A., The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Poruos Media , John Willey