Search Results

1 - 10 of 118 items :

  • "district heating" x
Clear All

References Vallios, I., Tsoutsos, T., Papadakis G. Design of biomass district heating systems Biomass and Bioenergy, Volume 33, Issue 4, April 2009, Pages 659-678 Difs, K., Wetterlund, E., Trygg, L., Söderström, M. Biomass gasification opportunities in a district heating system Biomass and Bioenergy, Volume 34, Issue 5, May 2010, Pages 637-651 Hepbasli, A. A review on energetic, exergetic and exergoeconomic aspects of geothermal district heating systems (GDHSs) Energy Conversion and Management, Volume 51, Issue 10, October 2010, Pages 2041-2061 Holmgren, K

R eferences [1] Latosov E., Volkova A., Siirde A., Thalfeldt M. The Impact of Parallel Energy Consumption on the District Heating Networks. Environmental and Climate Technologies 2019:23:1–13. [2] Lake A., Rezaie B., Beyerlein S. Review of district heating and cooling systems for a sustainable future. Renewable and Sustainable Energy Reviews 2017:67:417–25. [3] Pantaleo A. M., Giarola S., Bauen A., Shah N. Integration of biomass into urban energy systems for heat and power

References Žīgurs, Ā., Cers, A. Pilsētas siltumtīklu turpgaitas temperatūras samazināšanas ietekmes izpēte uz ekonomiskajiem rādītājiem. The Research Based on Economic Factors on Reduction of the Influence of Forwarding Temperatures in the Heat Systems of the City // RTU zinātniskie raksti. 6. sēr., Mašīnzinētne un transports. - 2. sēj. (2009), 1-100 lpp. Dalla Rosa, A., Li, H., Svendsen, S. Method for optimal design of pipes for low-energy district heating, with focus on heat losses, Department of Civil Engineering, Technical University of Denmark, Brovej

References 1. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Energy 2020. A strategy for competitive, sustainable and secure energy. Available at <>>. [Accessed 01.12.2011]. 2. Rezaie B, Rosen MA . District heating and cooling: Review of technology and potential enhancements. Applied Energy 2012; 93: 2-10. 3. Hlebnikov A., Volkova A., Džuba O., Poobus A., Kask U. Damages of the Tallinn District Heating

, K., SCHÖNBAUER, C. (2010): Nationaler Aktionsplan 2010 für erneuerbare Energie für Österreich (NREAP-AT). Wien, Bundesministerium für Wirtschaft, Familie und Jugend, 172 pp. LANG, B., TRETTER, H. (2011): Energie aus Biomasse in der österreichischen Sägeindustrie: Best-Practice und Potential. Vienna, Austrian Energy Agency, 52 pp. MADLENER, R. (2007): Innovation diffusion, public policy, and local initiative: The case of wood-fuelled district heating systems in Austria. Energy Policy, Vol. 35, No. 3, p. 1992–2008. MARKARD, J., RAVEN, R., TRUFFER, B. (2012

R eferences [1] Mazhar A. R., Liu S., Shukla A. A state of art review on the district heating systems. Renewable and Sustainable Energy Reviews 2018:96:420–439. doi:10.1016/j.rser.2018.08.005 [2] Thellufsen J. Z., Nielsen S., Lund H. Implementing cleaner heating solutions towards a future low-carbon scenario in Ireland. Journal of Cleaner Production 2019:214:377–388. doi:10.1016/j.jclepro.2018.12.303 [3] Nord N., Kristine E., Nielsen L., Kauko H. Challenges and potentials for low-temperature district heating implementation in Norway. Energy 2018

References 1. Lund, H., Werner, S., Wiltshire, R., Svendsen, S., Thorsen, J. E., Hvelplund, F., Mathiesen, B. V. 4th Generation District Heating (4GDH). Integrating smart thermal grids into future sustainable energy systems. Energy, 2014, No. 68, pp. 1−11. 2. Elsman, P. Copenhagen District Heating System. Application for the Global District Energy Climate Award, 2009. 43 p. 3. Dalla Rosa, A. Low-Temperature District Heating for Energy-Efficient Communities. Technical University of Denmark, 3.10.2012. Available: http

J., Gravelsins A., Blumberga A., Blumberga D. The effect of energy efficiency improvements on the development of 4th generation district heating. Energy Procedia 2016:95:522–527. doi:10.1016/j.egypro.2016.09.079 [8] Masatin V. Latosev E., Volkova A. Evaluation factor for district heating network heat loss with respect to network geometry. Energy Procedia 2016:95:279–285. doi:10.1016/j.egypro.2016.09.069 [9] Li H., Wang J. S. Load management in District Heating operation. Energy Procedia 2015:75:1202–1207. doi:10.1016/j.egypro.2015.07.155 [10] Pfeiffer R

REFERENCES 1. Lund, H., Werner, S., Wiltshire, R., Svendsen, S., Thorsen, J., Hvelplund, F., & Mathiesen, B.V. (2014). 4th generation district heating (4GDH) integrating smart thermal grids into future sustainable energy systems. Energy, 68 , 1–11, DOI: 10.1016/ 2. Pieper, H., Ommen, T., Elmegaard, B., & Markussen, W.B. (2019). Assessment of a combination of three heat sources for heat pumps to supply district heating. Energy, 176 , 156–170, DOI: 10.1016/ 3. Hammer, A., Sejkora, C., & Kienberger, T. (2018). Increasing

R eferences [1] Latosov E., Volkova A., Siirde A., Kurnitski J., Thalfeldt M. Methodological approach to determining the effect of parallel energy consumption on district heating system. Environmental and Climate Technologies 2017:19:5–14. doi:10.1515/rtuect-2017-0001 [2] Blumberga A., Cilinskis E., Gravelsins A., Ferrao P., Le O. Analysis of regulatory instruments promoting building energy efficiency. Energy Procedia 2018:147:258–267. doi:10.1016/j.egypro.2018.07.090 [3] Augustins E., Jaunzems Dz., Rochas C., Kamenders A. Managing energy efficiency of