Search Results

1 - 3 of 3 items :

  • "diazotacija" x
Clear All
Development and validation of spectrophotometric methods for determination of ceftazidime in pharmaceutical dosage forms

Development and validation of spectrophotometric methods for determination of ceftazidime in pharmaceutical dosage forms

Two spectrophotometric methods for the determination of ceftazidime (CFZM) in either pure form or in its pharmaceutical formulations are described. The first method is based on the reaction of 3-methylbenzothiazolin-2-one hydrazone (MBTH) with ceftazidime in the presence of ferric chloride in acidic medium. The resulting blue complex absorbs at λmax 628 nm. The second method describes the reaction between the diazotized drug and N-(1-naphthyl)ethylenediamine dihydrochloride (NEDA) to yield a purple colored product with λmax at 567 nm. The reaction conditions were optimized to obtain maximum color intensity. The absorbance was found to increase linearly with increasing the concentration of CFZM; the systems obeyed the Beer's law in the range 2-10 and 10-50 μg mL-1 for MBTH and NEDA methods, resp. LOD, LOQ and correlation coefficient values were 0.15, 0.79 and 0.50, 2.61. No interference was observed from common excipients present in pharmaceutical formulations. The proposed methods are simple, sensitive, accurate and suitable for quality control applications.

Open access
A new approach to the spectrophotometric determination of metronidazole and tinidazole using p-dimethylaminobenzaldehyde

A new approach to the spectrophotometric determination of metronidazole and tinidazole using p-dimethylaminobenzaldehyde

A new approach to the spectrophotometric determination of metronidazole (MZ) and tinidazole (TZ) has been developed. The procedure involves coupling of diazotized nitroimidazoles with p-dimethylaminobenzaldehyde (DMAB) to form a greenish-yellow solution. Optimal temperature and time were 0 °C (iced) and 3 minutes for diazotization and 30 °C and 2 minutes for coupling for both MZ and TZ. Coloured adducts of MZ and TZ showed shoulders at 406 nm and 404 nm, respectively, which were selected as analytical wavelengths. The reaction with p-DMAB occurred in a 1:1 mole ratio. Beer's law was obeyed within the 4.8-76.8 μg mL-1 concentration range with low limits of detection. The azo adducts were stable for over a week. Molar absorptivities were 1.10 × 103 (MZ) and 1.30 × 103 L mol-1 cm-1 (TZ). Overall recoveries of MZ and TZ from quality control samples were 103.2 ± 1.3 and 101.9 ± 1.3% over three days. There was no interference from commonly utilized tablet excipients. No significant difference was obtained between the results of the new method and the BP titrimetric procedures. The azo approach using the p-dimethylaminobenzaldehyde procedure described in this paper is simple, fast, accurate and precise. It is the first application of DMAB as a coupling component in the diazo coupling reaction.

Open access
A sensitive spectrophotometric method for the determination of sulfonamides in pharmaceutical preparations

A sensitive spectrophotometric method for the determination of sulfonamides in pharmaceutical preparations

A new, simple and sensitive spectrophotometric method for the determination of some sulfonamide drugs has been developed. The method is based on the diazotization of sulfacetamide, sulfadiazine, sulfaguanidine, sulfamerazine, sulfamethazine, sulfamethoxazole, and their coupling with 8-hydroxyquinoline in alkaline media to yield red coloured products with absorption maxima at 500 nm. Beer's law is obeyed from 0.1--7.0 μg mL-1. The limits of quantification and limits of detection were 0.11--0.18 and 0.03--0.05 μg mL-1, respectively. Intraday precision (RSD 0.1--0.5%) and accuracy (recovery 97.3--100.8%) of the developed method were evaluated. No interference was observed from common adjuvants. The method has been successfully applied to the assay of sulpha drug in pharmaceutical formulations.

Open access