Search Results

1 - 10 of 2,305 items :

  • "diameters" x
Clear All

vystružování. Vysoké učení technické v Brně, Fakulta strojního inženýrství. 2009. ISSN 978-80-214-3914-6. [8] FIALA, Stanislav; KOUŘIL, Karel. Moderní nástroje pro dokončování děr. MM Průmyslové spektrum. 25,4,2007, 4, s. 42-43. Dostupný také z WWW: <http://www.mmspek>. ISSN 1212-2572. [9] HAM-FINAL, s.r.o. Katalog výrobků. 2009. 60s. [10] HAM-FINAL, s.r.o. Interní materiály firmy. [11]KOUŘIL, K. - ČEP, R.: The development of new axial tools with edges of various cutting materials on defined diameters for the machining of

, I.D., 1983. A simplified technique for measuring raindrop size and distribution. Transactions of the ASABE - American Society of Agricultural and Biological Engineers, 26, 4, 1079-1084. Hauser, D., Amayenc, P., Nutten, B., Waldteufel, P., 1984. A new optical instrument for simultaneous measurement of raindrop diameter and fall speed distribution. J. Atmos. Oceanic Technol., 1, 256-269. Jarman, R.T., 1956. Stains produced by drops on filter paper. Royal Meteorological Society Quarterly J., 82, 252. Jones, D.M.A., 1992. Raindrop spectra at the ground. J. Appl

, Svatoňová T (2012b): Heat treatment temperature of Jatropha curcas L. seeds under compression loading. Scientia Agriculturae Bohemica, 43, 116-121. Kabutey A, Herak D, Chotěborský R, Dajbych O, Divišova M, Boatri WE (2013): Linear pressing analysis of Jatropha curcas L seeds using different pressing vessel diameters and seed pressing heights. Biosystems Engineering, 115, 42-49. doi: 10.1016/j.biosystemseng.2012.12.016. Kabutey A, Herák D, Dajbych O, Divišová M, Boatri W. E, Sigalingging R (2014): Deformation energy of Jatropha curcas L seeds under compression loading

R eferences [1] G. Chartrand and L. Lesniak, Graphs and Digraphs, 4th Ed. (CRC Press, 2005). [2] P. Erdős and R.J. Wilson, On the chromatic index of almost all graphs , J. Combin. Theory Ser. B 23 (1977) 255–257. doi:10.1016/0095-8956(77)90039-9 [3] J. Plesnik, Critical graphs of a given diameter , Acta Fac. Rerum Natur. Univ. Comenian. Math. 30 (1975) 71–93.

., Griess, V.C., Knoke, T., 2016: Variability in growth of trees in unevenaged stands displays the need for optimizing diversified harvest diameters. European Journal Forest Research, 135: 283-295. Saniga, M., Vencurik, J., 2007: Dynamika štruktúry a regeneračné procesy lesov v rôznej fáze prebudovy na výberkový les v LHC Korytnica. Zvolen, Technická univerzita vo Zvolene, 83 p. Seydack, A. H. W., 1995: An unconventional approach to timber yield regulation for multi-aged multispecies forests. I. Fundamental considerations. Forest Ecology and Management, 77

R eferences [1] M. Abas, Cayley graphs of diameter two and any degree with order half of the Moore bound , Discrete Appl. Math. 173 (2014) 1–7. doi:10.1016/j.dam.2014.04.005 [2] C. Balbuena, M. Miller, J. Širáň and M. Ždímalová, Large vertex-transitive graphs of diameter 2 from incidence graphs of biaffine planes , Discrete Math. 313 (2013) 2014–2019. doi:10.1016/j.disc.2013.03.007 [3] C. Dalfó, C. Huemer and J. Salas, The degree/diameter problem in maximal planar bipartite graphs , Electron. J. Combin. 23 (1) (2016) #P60. [4] P. Dankelmann, D. Erwin

References [1] E. Bannai and T. Ito, On finite Moore graphs, J. Fac. Sci. Tokyo Univ. 20 (1973) 191-208. [2] E. Bannai and T. Ito, Regular graphs with excess one, Discrete Math. 37 (1981) 147-158. doi:10.1016/0012-365X(81)90215-6 [3] R.M. Damerell, On Moore graphs, Proc. Cambridge Philos. Soc. 74 (1973) 227-236. doi:10.1017/S0305004100048015 [4] P. Erdös, S. Fajtlowicz and A.J. Hoffman, Maximum degree in graphs of diameter 2, Networks 10 (1980) 87-90. doi:10.1002/net.3230100109 [5] A.J. Hoffman and R.R. Singleton, On Moore graphs with diameter 2 and 3, IBM J. Res

) 221-241. [5] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434–447. [6] D.F. Anderson, Sh. Ghalandarzadeh, S. Shirinkam, P. Malakooti Rad, On the diameter of the graph Γ Ann ( M ) ( R ), Filomat . 26 (2012) 623–629. [7] F.W. Anderson, K.R. Fuller, Rings and Categories of Modules , Springer-Verlag 1992. [8] M.F. Atiyah and I.G. MacDonald, Introduction to Commutative Algebra . Addison-Wesley, Reading, MA, 1969. [9] A. Badawi, D. F. Anderson, Divisibility conditions in commutative rings with zero divisors


In industrial practice, the dimensional characterization of the polygranular materials can be done, experimentally and/or by calculation, on the basis of various types of granulometric distribution laws, of the different types of diameters, of the specific surface and of some indicators related to the granulometric uniformity. This paper aims at introducing a new indicator, called granulometric uniformity degree, defined on the basis of some informational statistics elements, and calculated in a unique way, different from any particular type of granulometric distribution. At the same time, a series of correlations between the granulometric uniformity degree and different characteristic diameters is pointed out, i.e. the specific surface of cements, characterized by the Rosin-Rammler-Sperling ganulometric distribution.

clinical practice. Edinburgh: Ed. Elsevier Churchill Livingstone; 2005. p. 1450-3. 5. Kamina P. Artere femorale. In: Kamina P, editor. Précis d’Anatomie Clinique Tome I Anatomie générale Organogénèse des membres Membre supérieur Membre inférieure. Paris: Ed. Maloine; 2002. p. 477-85 6. Sandgren T, Sonesson B, Ahlgren R, Lanne T. The diameter of the common femoral artery in healthy human: influence of sex, age, and body size. J Vasc Surg. 1999;29(3):503-10 7. Spector KS, Lawson WE. Optimizing safe femoral access during cardiac catheterization. Catheter Cardiovasc Interv