Search Results

1 - 10 of 245 items :

  • "decision tree" x
Clear All

algorithms." Pattern Recognition Letters, In Press, Corrected Proof, Available online 11 May 2010. M. Z. Man, G. Dyson, K. Johnson, B. Liao. "Evaluating Methods for Classifying Expression Data." Journal of Biopharmaceutical Statistics, Vol. 14, Issue 4, pp. 1065-1086, Nov. 2004. Y. Lu, J. Han. "Cancer classification using gene expression data." Information Systems Vol. 28, Issue 4, pp. 243-268, Jun. 2003. L. Rokach, O. Z. Maimon. Data mining with decision trees: theroy and applications. Singapore: World Scientific, 2008. J. R. Quinlan. "Induction of Decision Trees

data. In NDSS , 2015. [12] J. Brickell, D. E. Porter, V. Shmatikov, and E. Witchel. Privacy-preserving remote diagnostics. In CCS , pages 498–507, New York, NY, USA, 2007. ACM. [13] S. S. Burra, E. Larraia, J. B. Nielsen, P. S. Nordholt, C. Orlandi, E. Orsini, P. Scholl, and N. P. Smart. High performance multi-party computation for binary circuits based on oblivious transfer. IACR Cryptology ePrint Archive , 2015:472, 2015. [14] J. Catlett. Overpruning large decision trees. In IJCAI , pages 764–769, San Francisco, CA, USA, 1991. Morgan Kaufmann Publishers Inc

References Baran, B. & Kılıç, E. (2015). Applying the CHAID algorithm to analyze how achievement is influenced by university students’ demographics, study habits, and technology familiarity. Educational Technology & Society, 18 (2), 323-335. de Ville, B. (2006). Decision Trees for Business Intelligence and Data Mining: Using SAS Enterprise Miner. Cary, NC: SAS Institute Inc. Díaz-Pérez, M. F. & Bethencourt-Cejas, M. (2016). CHAID algorithm as an appropriate analytical method for tourism market segmentation. Journal of Destination Marketing & Management, 5 (3

) , volume 5628 of LNCS , pages 128–147. Springer, 2009. [BSR18] Diogo Barradas, Nuno Santos, and Luís Rodrigues. Effective detection of multimedia protocol tunneling using machine learning. In USENIX Security Symposium’18 , pages 169–185. USENIX, 2018. [CDH + 17] Martine De Cock, Rafael Dowsley, Caleb Horst, Raj Katti, Anderson C. A. Nascimento, Wing-Sea Poon, and Stacey C. Truex. Efficient and private scoring of decision trees, support vector machines and logistic regression models based on pre-computation. IEEE Transactions on Dependable and Secure Computing , To

References 1. Apté, C., Weiss, S. (1997), “Data mining with decision trees and decision rules”, Future Generation Computer Systems, Vol. 13, No. 2-3, pp. 197-210. 2. Bhattacharyya, S., et al. (2011), “Data mining for credit card fraud: A comparative study”, Decision Support Systems, Vol. 50, No. 3, pp. 602-613. 3. Coussement, K., Van den Bossche, F. A., De Bock, K. W. (2014), “Data accuracy’s impact on segmentation performance: Benchmarking RFM analysis, logistic regression, and decision trees”, Journal of Business Research, Vol. 67, No. 1, pp. 2751-2758. 4

References L. Breiman, J. Friedman, R. Olshen, C. Stone. Classification and Regression Trees. Belmont, CA: Wadsworth Int. Group, 1984. J. R. Quinlan. "Induction of Decision Trees." Machine learning, Vol. 1, Issue 1, pp. 81-106, 1986. E. Simoudis, J. Han, U. Fayyad , Eds. Second International Conference on Knowledge Discovery and Data Mining , August 2-6, 1996, Portland, Oregon, USA. Portland: AAAI Press, 1996. P. B. Brazdil, C. Soares, J. P. Da Costa. "Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results." Machine Learning

://vighnesh.me/virustotal/ 35. Quinlan, J. R. Induction of Decision Trees. – Machine Learning, Vol. 1 , 1986, No 1, pp. 81-106. http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/REPTree.html 36. Breiman, L., J. H. Friedman, R. A. Olshen, C. J. Stone. Classification and Regression Trees. Belmont, California, Wadsworth International Group, 1984. 37. Breiman, L. Random Forests. – Machine Learning, Vol. 45 , 2001, No 1, pp. 5-32. 38. Zhao, Y., Y. Zhang. Comparison of Decision Tree Methods for Finding Active Objects. – Advances in Space Research, Vol. 41 , 2008, No 12, pp. 1955

. (2009): Formalizing the Logic-Automaton Connection . – In: Proc. of the 22nd International Conference on Theorem Proving in Higher Order Logics, LNCS No 5674, pp.147–163. [22] Shiue Y.R. and Guh R.S. (2006): The optimization of attribute selection in decision tree-based production control systems . – The International Journal of Advanced Manufacturing Technology, vol.28, pp.737-746. [23] Shenoy P.P. (1998): Game Trees For Decision Analysis. – Theory and Decision, vol.44, No.2, April, pp.149-171. [24] Deptuła A. and Partyka M.A. (2013): Discrete optimization of a

Bing-Quan, L. (2004). A gradual combining method for multi-SVM classifiers based on distance estimation, Proceedings of the 3rd International Conference on Machine Learning and Cybernetics, Shanghai, China, pp. 3434-3438. Yujin, Z., Yihua, T., Haitao L. and Haiyan, G. (2011). A multi-classifier combined decision tree hierarchical classification method, Proceedings of the 2011 International Symposium on Image and Data Fusion (ISIDF), Yunnan, China, pp. 1-3. Zellmer, E., Fei, S. and Hao, Z. (2009). Highly accurate ECG beat classification based on continuous wavelet

of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing , pp.32-37, 2015. [4] J. Bernstein, I. Dasgupta, D. Rolnick and H. Sompolinsky, “Markov Transitions between Attractor States in a Recurrent Neural Network”, AAAI Spring Symposium Series , Science of Intelligence: Computational Principles of Natural and Artificial Intelligence, pp.1-5, 2017. [5] D. Lowd and J. Davis, “Learning Markov Network Structure with Decision Trees”, IEEE International Conference on Data Mining , Sydney, NSW, pp.334