Search Results

1 - 10 of 450 items :

  • "curvature" x
Clear All

REFERENCES [1] BRAKKE K. A.: The motion of surface by by its mean curvature . Mathematical Notes Vol. 20, Princeton University Press, Princeton, NJ, 1978. [2] CHOW, B.—LU, P. — NI, L.: Hamilton’s Ricci Flow . In: Graduate Studies in Mathematics, Vol. 77 , AMS, Providence RI, Science Press Beijing, New York, 2006. [3] HAMILTON, R. S.: Three-manifolds with positive Ricci curvature . J. Differ. Geom. 17 (1982), 255–306. [4] HAMILTON, R. S.: Four-manifolds with positive curvature operator , J. Differ. Geom. 24 (1986), 153–179. [5] HUISKEN, G.: Flow by mean

REFERENCES 1. Arai, Y., Honda, K., Iwai, K., Shinoda, K. Practical model “3DX” of Limited cone-beam X-ray CT for dental use. Int Congr Ser 2001;1230:713-8. 2. Balani, P., Niazi, F., Rashid, H. A brief review of the methods used to determine the curvature of root canals. J Res Dent 2015;3:57-3. 3. Bhagat K. Methods for determination of root canal curvature: a brief, review. Int. J of Scientific Research, 2017, 6(6):73-5 4. Bogle, J. Endodontic treatment of curved root canal systems. Oral Health 2013;103. 5. Cheung, G., Chan, A. An in vitro comparison of the

References [1] Bartkowiak T., Hyde J., Brown C. A., Multi-scale curvature tensor analysis of surfaces created by micro-EDM and functional correlations with discharge energy, 5th International Conference on Surface Metrology, At Poznan University of Technology, Poznan, Poland, 2016. [2] Bartkowiak T., Lehner J. T., Hyde J., Wang Z., Pedersen D. B., Hansen H. N., Brown C. A., Multi-scale areal curvature analysis of fused deposition surfaces, Conference: ASPE Spring Topical Meeting on Achieving Precision Tolerances in Additive Manufacturing, At Raleigh, North

REFERENCES [1]. ***, “ UIC Code 773-4 R ”, International Union of Railways, F-75015 Paris, 1997 [2]. ***, EN 1992-1-1:2004, “ Eurocode 2: Design of concrete structures - Part 1: General rules and rules for buildings ”, 2004 [3]. ***, EN 1994-2:2005, “ Eurocode 4: Design of composite steel and concrete structures – Part 2: General rules and rules for bridges ”, 2005 [4]. ***, “ Element Reference Manual ”, LUSAS Finit Element Analysis, Version 15.0 [5]. STĂNESCU R.M., “ Study of influence of the track curvature and supports obliquity at railway bridge structures

References [1] C. B aikoussis and T. K oufogiorgos , Helicoidal surfaces with prescribed mean or Gaussian curvature, Journal of Geometry, 63(1)(1998), pp. 25–29. [2] C. C. B eneki , G. K aimakamis and B. J. P apantoniou , Helicoidal surfaces in three dimensional Minkowski space, Journal of Mathematical Analysis and Applications, 275 (2002), pp. 586–614. [3] S. C hanillo and M. K iessling , Surfaces with prescribed Gauss curvature, Duke Mathematical Journal, 105(2) (2000), pp. 309–353. [4] M. D o C armo and M. D ajczer , Helicoidal surfaces with constant mean

References [1] C. Baikoussis, T. Koufogiorgos, Helicoidal surfaces with prescribed mean or Gaussian curvature, Journal of Geometry 63 .(1) (1998) 25-29. [2] C. C. Beneki, G. Kaimakamis, B. J. Papantoniou, Helicoidal surfaces in three-dimensional Minkowski space, Journal of Mathematical Analysis and Applications 275 .(2) (2002) 586-614. [3] I. Corwin, N. Hoffman, S. Hurder, V. eum, Y. Xu, Differential geometry of manifolds with density. Rose-Hulman Undergrad. Math. J. 7 (2006) 1-15. [4] M. P. Do Carmo, M. Dajczer, Helicoidal surfaces with constant mean

: On ϕ -recurrent Sasakian manifolds. Novi Sad J. Math. 33 (2003) 13–48. [6] H.G. Nagaraja, G. Somashekhara: τ -curvature tensor in ( k, µ )-contact metric manifolds. Mathematica Aeterna 2 (6) (2012) 523–532. [7] B.J. Papantonion: Contact Riemannian manifolds satisfying R ( ξ, X ) · R = 0 and ξ 2 ( k, µ )-nullity distribution. Yokohama Math. J. 40 (2) (1993) 149–161. [8] C.R. Premalatha, H.G. Nagaraja: On Generalized ( k, µ )-space forms. Journal of Tensor Society 7 (2013) 29–38. [9] A.A. Shaikh, K.K. Baishya: On ( k, µ )-contact metric manifolds

, Some vector fields on a Riemannian manifold with semi-symmetric metric connection, Bull. Iranian Math. Soc., 38, (2012), 479-490 [14] D. Smaranda, Pseudo Riemannian recurrent manifolds with almost constant curvature, The XVIII Int. conf. on Geometry and Topology (Oradea 1989), pp 88-2, Univ. "Babes Bolyai" Cluj-Napoca, 2, (1988) [15] D. Smaranda and O. C. Andonie, On semi-symmetric connections, Ann. Fac. Sci. Univ. Nat. Zaire (Kinshasa), Sec. Math.-Phys., 2, (1976), 266-270 [16] R. N. Singh, On a product semi-symmetric non-metric connection in a locally decomposable

References [1] A. L. Alías, A. Brasil Jr, A. G. Colares, Intergral formulae for space- like hypersurfaces in conformally stationary spacetimes and applications, Proc. Edinb. Math. Soc., 46 (2003), 465-488. [2] L. J. Alías, A. G. Colares Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson-Walker space- times, Math. Proc. Camb. Phil. Soc., 143 (2007), 703-729. [3] L. J. Alías, M. Dajczer, Uniqueness of constant mean curvature surfaces properly immersed in a slab, Comment. Math. Helv., 81 (2006), 653-663. [4] L. J

M. Versaci, Electrostatic field in terms of geometric curvature in membrane mems devices, Communications in Applied and Industrial Mathematics , vol. 8, no. 1, pp. 165–184, 2017. 6. A. Rahaman, A. Ishfaque, H. H. Jung, and B. Kim, Bio-inspired rectangular shaped piezoelectric mems directional microphone, Sensors , vol. 19, no. 1, pp. 88–96, 2019. 7. M. Versaci, G. Angiulli, L. Fattorusso, and A. Jannelli, On the uniqueness of the solution for a semi-linear elliptic boundary value problem of the membrane mems device for reconstructing the membrane profile in