# Search Results

## 1 - 10 of 21 items :

• "concrete cracking"
Clear All

## Abstract

Numerical analysis of the tensioning cables anchorage zone of a bridge superstructure is presented in this paper. It aims to identify why severe concrete cracking occurs during the tensioning process in the vicinity of anchor heads. In order to simulate the tensioning, among others, a so-called local numerical model of a section of the bridge superstructure was created in the Abaqus Finite Element Method (FEM) environment. The model contains all the important elements of the analyzed section of the concrete bridge superstructure, namely concrete, reinforcement and the anchoring system. FEM analyses are performed with the inclusion of both material and geometric nonlinearities. Concrete Damage Plasticity (CDP) constitutive relation from Abaqus is used to describe nonlinear concrete behaviour, which enables analysis of concrete damage and crack propagation. These numerical FEM results are then compared with actual crack patterns, which have been spotted and inventoried at the bridge construction site.

## Abstract

Formulae for the deflection of two examples of isostatic systems (simply supported beam, cantilever) were derived, accounting for influence of distribution of bending moments on cracking and beam stiffness distribution, according to EC2. Numerical analysis of the problem for the same two examples as well as for two further hyperstatic systems was performed using an iterative FEM algorithm. The influence of nonuniformity of cracking on deflection and distribution of bending moments was shown to be negligible in typical practical design problems, therefore also an estimation of deflection on the basis of the distribution of bending moments and the value of the factor αk obtained from linear solution (before redistribution) is shown to be justified.

## Abstract

In concrete beam bridges, the end diaphragm at the end of the bridge is a common structural component that connects the main beams and transfers the beam loads to the bridge bearings. In integral bridges the end diaphragm also retains the soil of embankments due to the absence of abutments. Cracking of the front surface on the end diaphragm has been detected in post-tensioned beam bridges in Finland and Sweden. Presumably the post-tensioning of the bridge and the shaping and detailing of the connection of the end diaphragm and main beam have an effect on cracking tendency. The aim of this study is to examine the structural behaviour and the cracking potential of end diaphragms using linear analysis of the post-tensioned bridge and to find measures to prevent the cracking.

The observations collected through field surveys are compared to results of linear FE analysis to clarify the cause of the cracking. The verification of model is performed by comparison of patterns of cracking observed in field surveys and the distribution of maximum tensile stresses in the FE model. With model variations, the effectiveness of measures for the prevention of cracking are observed.

## Abstract

This project focused on how the cracking process in concrete is influenced by both the micro and meso structures of concrete. The aim was to increase knowledge pertaining to the effect of critical parameters on the cracking process and how this is related to the material’s macroscopic properties. A methodology based on the combination of different experimental methods and measuring techniques at different scales was developed. Crack propagation during tensile loading of small-scale specimens in a tensile stage was monitored by means of Digital Image Correlation (DIC) and Acoustic Emission (AE). After testing, crack patterns were studied using fluorescence microscopy.

## Abstract

Imposed and restrained deformations cause stresses in continuous concrete bridges, and in analyses of the superstructure these stresses are usually reduced to some degree due to creep and cracking of concrete. This study examines cracking and redistribution of stresses in a bridge superstructure under the loads and load combinations used in the original bridge design. The subject of this study is a three-span post-tensioned continuous concrete cantilever beam bridge. The bridge was analysed with non-linear calculation utilising the general force method and moment-curvature relationships. The analysis yielded the bending stiffness of the post-tensioned bridge superstructure as a function of bridge length under different loads. It was discovered that the secondary moment from prestressing force increased as the bending stiffness of the central span decreased due to cracking under external loads, which is not normally considered in design. The bending moment effects of linear temperature difference and support settlement decreased as expected as the superstructure bending stiffness decreased. The analysis provided new information on the effects of secondary moment from the prestressing force and on the difference between the cracked state and the linear elastic analysis of the concrete bridge superstructure.

## Abstract

To solve the problem of predicting the service life of superstructures, this work proposes the basis and methodological developments of creep theory with increasing loads as well as regression analysis of the results of laboratory experiments. The main limitation in terms of reinforcement is corrosion in the concrete cracks, which was determined during laboratory experiments. Based on the results, the approximate analytical dependences concerning reinforcement corrosion depth change over time at a constant value of crack width were selected. The paper substantiates the validity of the analytical dependences as a result of regression analysis; it proposes formulae for determining the corrosion rate of rebars in reinforced concrete superstructures. The obtained analytical dependences allowed for the developing of a process for predicting changes to the state of the superstructure in light of operational changes.

## Abstract

The Dez dam was commissioned in 1963 and since sediments accumulated in the reservoir up to an elevation of approximately 15m below the intake of the power tunnel. One of the possible measures to improve operation of the reservoir is by heightening of the existing dam. This paper describes the conducted procedure for static and thermal calibration of this 203m dam in Iran based on micro geodesies measurements. Also the nonlinear response of existing dam is investigated under maximum credible earthquake ground motions considering joint behavior and mass concrete cracking and safety of dam is evaluated for possible heightening. For thermal calibration of provided numerical model, transient thermal analysis was conducted and results were compared with thermometers records installed in central block. In addition, for static calibration; thermal distribution within dam body, dam self weight, hydrostatic pressure and silt load applied on the 3D finite element model of dam-reservoir-foundation were considered. Results show that the distribution of stresses will be critical within dam for heightening case under seismic loads in MCL.