effectiveness factor , Chemical Engineering Science, Vol. 59, 2004, 479–483. [7] Georgiou A., Tabiś B., Metoda aproksymacyjna badania nieustalonego procesu dyfuzji i reakcji chemicznej w ziarnie katalizatora , Inżynieria Chemiczna i Procesowa, Vol. 16, 1995, 379–391. [8] Goto M., Hirose T., Approximate rate equation for intraparticle diffusion with or without reaction , Chemical Engineering Science, Vol. 48, 1993, 1912–1915. [9] Goto M., Smith J.M., McCoy B.J,. Parabolic profile approximate (linear driving force model) for chemical reaction , Chemical Engineering Science

): Natural convection of nano-fluids. – Heat and Mass Transfer, vol.39, pp.775-784. [11] Devi A.S.P. and Kandasamy R. (1999): Effects of chemical reaction heat and mass transfer on laminar flow along a semi infinite horizontal plate. – Heat and Mass Transfer, vol.35, pp.465-7. [12] Devi A.S.P. and Kandasamy R. (2002): Effects of chemical reaction, heat and mass transfer on non-linear mhd laminar boundary layer flow over a wedge with suction and injection. – Int. Comm. Heat Mass Transfer, vol.29, pp.707-716. [13] Chamkha A. (2003): MHD flow of uniformly stretched

References Carnahan B., Luther H.A. and Wilkes J.O. (1969): Applied Numerical Methods. - New York: John Wiley and Sons. Chambre P.L. and Young J.D. (1958): On the diffusion of a chemically reactive species in a laminar boundary layer flow. - The Physics of Fluids, vol.1, No.1, pp.48-54. Das U.N., Deka, R.K. and Soundalgekar V.M. (1999): Effects of mass transfer on flow past an impulsively started infinite vertical plate with chemical reaction. - The Bulletin of Guma, vol.5, pp.13-20. Kumari M. and Nath G. (1999): Development of two-dimensional boundary layer with

References Apelblat A. (1980): Mass transfer with a chemical reaction of the first order: analytical solution. - The Chemical Engineering Journal, vol.19, pp.19-37. Cai R. and Zhang N. (2003): Explicit analytical solutions of linear and non linear interior heat and mass transfer equation sets for drying process. - ASME J. Heat Transfer, vol.125, pp.175-178. Callahan G.D. and Marner W.J. (1976): Transient free convection with mass transfer on an isothermal vertical flat plate - Int. J. Heat Mass Transfer, vol.19, pp.165-174. Carnahan B., Luther H.A. and Wilkes J

constant heat flux and chemical reaction . - Forschung im Ingenieurwesen, vol.60, No.10, pp.284-287. Das U.N., Deka R.K. and Soundalgekar V.M. (1999): Effects of mass transfer on flow past an impulsively started infinite vertical plate with chemical reaction . - The Bulletin of GUMA 5, pp.13-20. Muthucumaraswamy R. and Ganesan P. (2001): Effects of the chemical reaction on flow characteristics in an unsteady upward motion of an isothermal plate . - Journal of Applied Mechanics and Technical Physics, vol.42, No.4, pp.665-671. Soundalgekar V.M., Gupta S.K. and Aranake R

Nomenclature x' Axial coordinate y' Transverse coordinate y Dimensionless distance to the surface t' Time t Dimensionless time u' Velocity component in x' direction v' Velocity component in y' direction u Dimensionless axial velocity u' P Wall velocity u P Dimensionless wall velocity V 0 Scale for suction velocity C' Concentration C w Wall concentration C ∞ Concentration away from the wall C Dimensionless concentration T' Temperature T w Wall temperature T ∞ Free stream temperature 𝜃 Dimensionless temperature k 1 Chemical reaction

References Basant K.J. Prasad R. and Surendra R. (1991): Mass transfer effects on the flow past an exponentially accelerated vertical plate with constant heat flux . - Astrophysics and Space Science , vol.81, pp.125-134. Chambre P.L. and Young J.D. (1958): On the diffusion of a chemically reactive species in a laminar boundary layer flow . - The Physics of Fluids, vol.1, pp.48-54. Das U.N., Deka R.K. and Soundalgekar V.M. (1994): Effects of mass transfer on flow past an impulsively started infinite vertical plate with constant heat flux and chemical reaction

effects on the flow past a vertical oscillating plate . – Astrophysics and Space Science, vol.64, pp.165-172. [13] Revankar S.T. (2000): Free convective effect on flow past an impulsively started or oscillating infinite vertical plate . – Mechanics Research Comm, vol.27, pp.241-246. [14] Muthucumaraswamy R. and Meenakshisundaram S. (2006): Theoretical study of chemical reaction effects on vertical oscillating plate with variable temperature . – Theoret. Appl. Mech., vol.33, No.3, pp.245-257, Belgrade. [15] Chandrakala P. (2010): Radiation effects on flow past an

References [1] Kolomuç A, Tekin S. Chemistry teachers’misconceptions concerning concept of chemical reaction rate. Eurasian J Phys Chem Educ. 2011;3(2):84-101. http://www.ijpce.org/Issue-2-2011,2968 . [2] Cakmakci G. J Chem Educ. 2010;87(4):449-455. DOI: 10.1021/ed8001336. [3] Bektaşli B, Cakmakci G. Consistency of students’ ideas about the concept of rate across different contexts. Educ Sci. 2011;36(162):273-287. http://egitimvebilim.ted.org.tr/index.php/EB/article/viewFile/1034/327 . [4] Yalçinkaya E, Taştan-Kirik Ö, Boz Y, Yildiran D. Res Sci Technol Educ

concentration in the presence of thermal radiation and chemical reaction. – International Journal of Applied Mechanics and Engineering, vol.22, No.4, pp.1059-1073, DOI: 10.1515/ijame-2017-0068. [10] Nield D.A. and Bejan A. (1998): Convection in Porous Media. – 2nd edition, Berlin: Springer Verlag. [11] Singh A.K. (2002): MHD free convective flow through a porous medium between two vertical parallel plates . – Ind. J. Pure and Appl. Phys., vol.40, pp.709–713. [12] Helmy K.A. (1998): MHD unsteady free convective flow past a vertical porous plate . – Journal of Applied