Search Results

1 - 10 of 43 items :

Clear All
Enzymes in Tenderization of Meat - The System of Calpains and Other Systems - a Review

References Bernard C., Cassar-Malek I., Le Cunff M., Dubroeucq H., Renard G., Hocquette J. F., New indicators of beef sensory quality revealed by expression of specific genes. J. Agr. Food Chem., 2007, 55, 5229-5237. Boehm M. L., Kendall T. L., Thompson V. F., Goll D. E., Changes in the calpains and calpastatin during post mortem storage of bovine muscle. J. Anim. Sci., 1998, 76, 2415-2434. Boleman S. J., Boleman S. L., Bidner T. D., Mc Millin K. W., Monlezun C. J., Effects of

Open access
New Polymorphisms in Regulatory Regions of Porcine μ-Calpain Gene and Their Association with CAPN1 Transcript Abundance

References Carragher N.O., Frame M.C. (2002). Calpain: a role in cell transformation and migration. Int. J. Biochem. Cell. Biol., 34: 1539–1543. Cheong H.S., Yoon D.H., Park B.L., Kim L.H., Bae J.S., Namgoong S., Lee H.W., Han C.S., Kim J.O., Cheong I.C., Shin H.D. (2008). A single nucleotide polymorphism in CAPN1 associated with marbling score in Korean cattle. BMC Genetics, 9: 3. Chomczynski P. (1993). A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques, 15: 532–537. Gandolfi G

Open access
Associations of CAST, CAPN1 and MSTN genes polymorphism with slaughter value and beef quality

References Aiello D., Patel K., Lasagna E. (2018). The myostatin gene: an overview of mechanisms of action and its relevance to livestock animals. Anim. Gen. 49: 505-519. doi: 10.1111/age.12696 Allais S., Journaux L., Levéziel H., Payet-Duprat N., Raynaud P., Hocquette J.F., Lepetit J., Rousset S., Denoyelle C., Bernard-Capel C., Renand G. (2011). Effects of polymorphisms in the calpastatin and μ-calpain genes on meat tenderness in 3 French beef breeds. J. Anim. Sci. 89: 1-11. Allais S., Levéziel H., Payet-Duprat N., Hocquette J.F., Lepetit J

Open access
The Growing Family of Limb-Girdle Muscular Dystrophies: Old and Newly Identified Members


Limb-girdle muscular dystrophies (LGMD) are an extremely heterogeneous and rapidly expanding group of diseases characterized by progressive weakness of pelvic, scapular and trunk muscles with sparing of facial and distal musculature in most of the subtypes, onset in childhood or in adults of both sexes, very variable clinical severity ranging from mild to severe phenotypes, some associated with cardio-pulmonary and extraskeletal impairment and high serum creatine-kinase (CK) levels. In the past years, huge advances have been recorded in the various identification methods and new distinct entities were discovered. However, it is not yet clear why some muscle groups are affected and others spared in a specific subtype of LGMD, why similar clinical pictures are associated with different genes and mutations, while the same gene or mutation may present with very various clinical phenotypes [1]. In this review we summarize the main aspects of positive and differential diagnosis in LGMD.

Open access
Effect of Calpastatin Gene Polymorphism on Lamb Growth and Muscling

References Byun S. O., Zhou H., Forrest R. H., Frampton C. M., Hickford J. G. (2008). Association of the ovine calpastatin gene with birth weight and growth rate to weaning. Anim Genet., 39 (5): 572-573. Casas E., White S. N., Wheeler T. L., Shackelford S. D., Koohmaraie M., Rile D. G., Chale C. C., Johnson D. D., Smith P. L. (2006). Effects of calpastatin and μ-calpain markers in beef cattle on tenderness traits. J. Anim. Sci., 84: 520-525. Chung H. Y., Davis M. E., Hines H. C

Open access
New Polymorphisms in Regulatory Region of CAPN3 Gene with no Effect on Gene Expression in Breast Muscle of Broiler Chickens

References Barendse W., Harrison B.E., Bunch R.J., Thomas M.B. (2008). Variation at the calpain 3 gene is associated with meat tenderness in zebu and composite breeds of cattle. BMC Genet., 9: 41–48. Barrett C.W., Smith J.J., Lu L.C., Markham N., Stengel K.R., Short S.P., Zhang B., Hunt A.A., Fingleton B.M., Carnahan R.H., Engel M.E., Chen X., Beauchamp R.D., Wilson K.T., Hiebert S.W., Reynolds A.B., Williams C.S. (2012). Kaiso directs the transcriptional corepressor MTG16 to the Kaiso binding site in target promoters. PLoS One, 7(12): e51205. Bartel D

Open access
Single loci and haplotypes in CAPN1 and CAST genes are associated with growth, biometrics, and in vivo carcass traits in Santa Inês sheep

. 7: 641-652. Dagong M.I.A., Sumantri C., Noor R.R., Herman R., Yamin M. (2016). Growth characteristic of Indonesian Thin Tail sheep (TTS) based on calpastatin ( CAST ) gene genotype variation. Adv. Environ. Biol. 10: 27-31. Dedieu S., Dourdin N., Dargelos E., Poussard S., Veschambre P., Cottin P., Brustis J.J. (2002). Calpain and myogenesis: development of a convenient cell culture model. Biol. Cell. 94: 65-76. Dehnavi E., Ahani-Azari M., Hasani S., Nassiry M.R., Mohajer M., Khan-Ahmadi A.R., Shahmohamadi L., Yousefi S. (2012). Association between

Open access
Beef tenderness improvement by dietary vitamin D3 supplementation in the last stage of fattening of cattle

., Rosochacki S.J.: Znaczenie kalpain i katepsyn w procesie degradacji białek mięśniowych w stanie post mortem podczas kruszenia i dojrzewania mięsa. Roczn Inst Przem Mięsn Tł 2002, 39, 77–89. 18. Juszczuk-Kubiak E., Rosochacki S.J.: Geny warunkujące jakość mięsa u bydła – proteoliza w mięśniach a kruchość wołowiny. Przegląd Hod 2007, 75, 4–6. 19. Kemp C.M., Sensky P.L., Bardsley R.G., Butter P.J., Parr T.: Tenderness – an enzymatic view. Meat Sci 2010, 84, 248–256. 20. Lian T., Wang L., Liu Y.: A new insight into the role of calpains in post-mortem meat

Open access
Postmortem Degradation of Desmin and Dystrophin in Breast Muscles from Capons and Cockerels

–553. Chang Y.-S., Chou R.-G.R. (2010). Postmortem degradation of desmin and calpain in breast and leg and thigh muscles from Taiwan black-feathered country chickens. J. Sci. Food Agric., 90: 2664–2668. Chang Y.-S., Chou R.-G.R. (2012). Postmortem role of calpains in Pekin duck skeletal muscles. J. Sci. Food Agric., 92: 1620–1626. Chen K.L., Hsieh T.Y., Chiou P.W.S. (2006). Caponization effects on growth performance and lipid metabolism in Taiwan country chicken cockerels. Asian-Austral. J. Anim. Sci., 19: 438–443. Chen K.L. Chen T.T., Lin K.J., Chiou P

Open access
Myosin Heavy Chain Composition, Rate of Dystrophin and Integrin Degradation and Meat Quality of Pig Longissimus thoracis and psoas major Muscles During Postmortem Aging

., Beltrame F., Marcenaro G., Bonilla E. (1992). Dystrophin at the plasma membrane of human muscle fibers shows a costameric localization. J. Clin. Neuromuscul. Dis., 2: 99–109. Morrison H.E., Mielche M.M., Purlsow P.P. (1998). Immunolocalisation of intermediate filament proteins in porcine meat. Fibre type and muscle-specific variations during conditioning. Meat Sci., 50: 91–104. Nowak M. (2005). The role of calpains in the meat tenderization process. Zywn.-Nauk. Technol. Ja., 1: 5–17. Oksbjerg N., Petersen J.S., Sorensen I.L., Henckel P.P., Vestergaard M

Open access