Search Results

1 - 10 of 332 items :

  • "biodegradation." x
Clear All
Biodegradation of selected substances used in liquid fertilizers as an element of Life Cycle Assessment

://www.back-to-basics.net/efu/pdfs/ Ruter, J.M. (2006). Micronutrients for soilless substrates. Tech Shares, The Scotts Company LLC. Gorlach, E. & Mazur, T. (2001). The agricultural chemistry - principles of nourishment and fertilization of plants. PWN, Warszawa. (in Polish). Hinck, M.L., Ferguson, J. & Puhaakka, J. (1997). Resistance of EDTA and DTPA to aerobic biodegradation, Wat. Sci. Tech. 35 (2 - 3), 25 - 31. Oviedo, C. & Rodriguez, J. (2003). EDTA: The chelating agent under environmental scrutiny, Quim. Nova. 26

Open access
Biodegradation of 3,5-dinitrosalicylic acid by Phanerochaete chrysosporium

Biodeterioration and Biodegradation, 39: 45–53. Bonnarme, P., Jeffries, T.W. 1990. Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi. Applied Environmental Microbiology, 56: 210–217. Claus, H. 2013 Microbial degradation of 2,4,6-Trinitrotoluene in vitro and in natural environments. Environmental science and engineering biological remediation of explosive residues. Environmental Science and Engineering, 15–38. Cvancarova, M., Kfesinova, Z.,Filipova, A., Covino, S., Cajthami, T. 2012. Biodegradation

Open access
Determination of biodegradation rate of carrier for microorganism immobilization fabricated based on starch

References 1. Rodziewicz, A. & Łaba W. (2008). Biodegradation of feather keratin by Bacillus cereus in pure culture and compost, EJPAU, 11 (2). 2. Yano, Y. & Oikawa, H. & Satori, M. (2008). Reduction of lipids in fish meal prepared from fish waste by a yeast Yarrowia lipolytica . Int. J. Food Microbiol . 121, 302-307. DOI: 10.1016/j.ijfoodmicro.2007.11.012. 3. Chrzanowski, Ł. & Bielicka-Daszkiewicz, K. & Owsianiak, M. & Aurach, A. & Kaczorek, E. & Olszanowski, A. (2008). Phenol and n-alkanes (C12 and

Open access
Remediation potential of bacterial mixed cultures for polychlorinated biphenyls (PCBs) biodegradation

References Bergman Å, Brouwer A, Hagmar L, Meerts I, Sjödin A (2001) APMIS Journal of Pathology, Microbiology and Immunology 109: S505. Cai M, Song G, Li Y, Du K (2018) Phytochemistry Letters 23: 66—72. Cecchin I, Reddy KR, Thomé A, Tessaro EF, Schnaid F (2017) International Biodeteriororation and Biodegradation 119: 419—428. Chen F, Hao S, Qu J, Ma J, Zhang S (2015) Annals of Microbiology 65: 1847—1854. Chung SY, Maedam M, Song E, Horikoshi K, Kudo T (1994) Bioscience, Biotechnology and Biochemistry 58: 2111—2113. Clark RR

Open access
Biodegradation of poly(ε-caprolactone) in natural water environments

polimerowych pochodzenia naturalnego w środowisku wody morskiej. Polimery(Warsaw) 53(11-12), 854-864. (in Polish). 9. Rutkowska, M., Krasowska, K., Heimowska, A. & Steinka, I. (2002). Wpływ modyfi kacji poli(ε-kaprolaktonu) na jego biodegradację w warunkach naturalnych. Polimery(Warsaw) 47(4), 262-268. (in Polish) 10. Rutkowska, M., Krasowska, K., Heimowska, A., Steinka, I., Janik, H., Haponiuk, J. & Karlsson, S. (2002). Biodegradation of Modifi ed Poly(ε-caprolactone) in Different Environments. Pol. J. Environ. Stud. 11(4), 413

Open access
Biodegradation of bottom sediments of Turawa Lake

Biodegradation of bottom sediments of Turawa Lake

In this work we tested biopreparations developed in our laboratory for their ability to degrade the organic matter of the bottom sediments of Turawa Lake. The biodegradation was conducted under laboratory conditions for 6 weeks. For the testing purposes, there were three variants of biopreparations that contained autochthonous strains originating from our own collection and their mixture. The testing showed that the introduction of the biopreparations to the bottom sediment resulted in a significant increase of the number of bacteria, which consequently brought about the reduction of organic compounds in the sediment. In the case of all the variants, the number of bacteria increased by order of 102 - 104 CFU/g after 42 days of biodegradation. Among the tested biopreparations, the most effective one was the mixture of the autochthonous strains and those originating from the collection. After biopreparation was applied, a drop of content of carbohydrates by 66.94%, fatty matter by 83.33% and proteins by 74.42% was noted.

Open access
E Ffectiveness of Intrinsic Biodegradation Enhancement in Oil Hydrocarbons Contaminated Soil

crude oil extraction by indigenous bacteria, International Biodeterioration and Biodegradation, 47, 233-238. [4] Coulon, F. & Delille, D. (2003). Effects of Biostimulation on Growth of Indigenous Bacteria in Sub- -Antarctic Soil Contaminated with Oil Hydrocarbons, Oil and Gas Science and Technology, 58, 469-479. [5] D’Annibale, A., Rosetto, F., Leonardi, V., Federici, F. & Petruccioli, M. (2006). Role of autochthonous fi lamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons, Applied and

Open access
New Approach for n-Hexadecane Biodegradation by Sol-Gel Entrapped Bacterial Cells

-2920.2005.00742.x. [5] April TM, Foght JM, Currah RS. Can J Microbiol. 2000;46:38-49. DOI: 10.1139/cjm-46-1-38. [6] Uche EC, Dadrasnia A. 2017 HC-0B-06: Biodegradation of Hydrocarbons. In: Heimann K, Karthikeyan O, Muthu S, editors. Biodegradation and Bioconversion of Hydrocarbons. Environmental Footprints and Eco-design of Products and Processes. Singapore: Springer; 2017. DOI: 10.1007/978-981-10-0201-4. [7] Vanharova L, Julinova M, Slavik R. Ecol Chem Eng S. 2017;24(2):299-309. DOI: 10.1515/eces-2017-0021. [8] Cassidy MB, Lee H, Trevors JT. J Ind

Open access
Efficiency of aerobic biodegradation of beet molasses vinasse under non-controlled pH: conditions for betaine removal / Efektywność tlenowej biodegradacji buraczanego wywaru melasowego przy nieregulowanym pH podłoża: określenie warunków usunięcia betainy

References [1] Beaudet, R., Gagnon, C., Bisaillon, J.G. & Ishaque, M. (1990). Microbial aspects of aerobic thermophilic treatment of swine waste, Applied and Environmental Microbiology, 56, 4, pp. 971-976. [2] Becker, P., Köster, D., Popov, M.N., Markossian, S., Antranikian, G. & Märkl, H. (1999). The biodegradation of olive oil and the treatment of lipid-rich wool scouring wastewater under aerobic thermophilic conditions, Water Research, 33, 3, pp. 653-660. [3] Carta-Escobar, F., Pereda-Martín, J., Alvarez

Open access
Exploring the potential of fungal-bacterial consortium for low-cost biodegradation and detoxification of textile effluent

of plant growth promoting bacteria in decolorization of dye Disperse Red 73 adsorbed on milled sugarcane bagasse under solid state fermentation, International Biodeterioration & Biodegradation, 86, part C, pp. 364-371. Kadam, A.A., Lade, H.S., Patil, S.M. & Govindwar, S.P. (2013). Low cost CaCl2 pretreatment of sugarcane bagasse for enhancement of textile dyes adsorption and subsequent biodegradation of adsorbed dyes under solid state fermentation, Bioresource Technology, 132, pp. 276-284. Kadam, A.A., Telke, A.A., Jagtap, S

Open access