Search Results

1 - 2 of 2 items :

  • "bioclimatic niche" x
Clear All

Abstract

In this study an attempt is made to highlight important variables shaping the current bioclimatic niche of a number of mite species associated with the infestation of stored products by employing a species distribution modeling (SDM) approach. Using the ENVIREM dataset of bioclimatic variables, performance of the most robust models was mostly influenced by: 1) indices based on potential evapotranspiration, which characterize ambient energy and are mostly correlated with temperature variables, moisture regimes, and 2) strong fluctuations in temperature reflecting the severity of climate and/or extreme weather events. Although the considered mite species occupy man-made ecosystems, they remain more or less affected by the surrounding bioclimatic environment and therefore could be subjected to contemporary climate change. In this respect investigations are needed to see how this will affect future management targets concerning the safety of food storages.

Abstract

The Steppe mouse, Mus spicilegus, is endemic to Europe and found to be expanding its home range in recent years. In Ukraine there are indications a north- and eastwards expansion and/or reestablishment of M. spicilegus. We suggest that climatic conditions may be the primary factors that foster or limit the range expansion of M. spicilegus in Eastern Europe. Our objective was to complement the knowledge about the distribution of the species with an estimation of the potential distribution of the species in Ukraine using known occurrence sites (in Ukraine and neighbouring areas) and environmental variables in an ecological niche modelling algorithm. After accounting for sampling bias and spatial autocorrelation, we retained 73 occurrence records. The algorithm used in this paper, Maxent (Phillips et al., 2006), is a machine learning algorithm and only needs presence data, besides the environmental layers. Using this approach, we have highlighted the importance and significance of a number of bioclimatic variables, particularly those characterizing wintering conditions, under which higher mean temperatures enhance habitat suitability, whereas increased precipitation leads to an opposite effect. The broadly northwards shift of the home range of the species in Ukraine could generally be due to the increasing (since the 1980s) mean temperature of the winter season. We expect this expansion process will continue together with the changing climate and new records of locations of the species may be used for monitoring such change.