Search Results

1 - 10 of 118 items :

Clear All

LITERATURA Abel S., Peters A., Trinks S., Schonsky H., Facklam M. and Wessolek G., 2013. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202–203: 183–191. Agegnehu G., Bass, A., Nelson P., Bird M., 2016. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of The Total Environment 543: 295–306. Ameloot N., Sleutela S., Caseb S., Albertic G., McNamarab N., Zavallonic C., Vervischa B., delle Vedovec G., De Nevea S

REFERENCES AGEGNEHU, G. – BASS, A.M. – NELSON, P.N. – BIRD, M.I. 2016. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. In Science of The Total Environment , vol. 543, pp. 295–306. DOI: 10.1016/j.scitotenv.2015.11.054 DZIADOWIEC, H. – GONET, S.S. 1999. Przewodnik metodyczny do badań materii organicznej gleb [Methodical guide-book for soil organic matter studies]. Prace Komisji Naukowych Polskiego Towarzystwa Gleboznawczego, N. 120, Komisja chemii gleb, Zespół Materii

References Abdul Hamid, S.B., Chovdury, Z.Z., Zain, S.M. 2014. Base catalytic approach: A promising technique for the activation of biochar for equilibrium sorption studies of Copper, Cu(II) ions in single solute system. Materials (Basel), 7(4): 2815-2832. doi:10.3390/ma7042815. Ahmad, M., Lee, S.S., Rajapaksha, A.U., Vithanage, M., Zhang, M., Cho, J.S., Lee, S.E., Ok, Y.S. 2013. Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresour. Technol., 143: 615-622. doi:10.1016/j.biortech.2013.06.033. Das, O., Sarmah, A

.: Utilization of biochar sorbents for Cd2+, Zn2+, and Cu2+ ions separation from aqueous solutions: comparative study. Environ. Monit. Assess., 187, 2015, 4093. HALE, S.E., HANLEY, K., LEHMANN, J., ZIMMERMAN, A.R., CORNELISSEN, G.: Effects of chemical, biological and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar. Environ. Sci. Technol., 45, 2011, 10445-10453. KADUKOVÁ, J., HORVÁTHOVÁ, H.: Biosorption of copper, zinc and nickel from multi-ion solutions. Nova Biotechnol. Chim., 11, 2012, 125-132. KARER, J., WIMMER; B., ZEHETNER

References 1. Tag, A.T., Duman G., Ucar, S. & Yanik, J. (2016). Effects of feedstock type and pyrolysis temperature on potential applications of biochar. J. Anal. Appl. Pyrol. 120, 200-206. DOI: 10.1016/j.jaap.2016.05.006. 2. Lehmann, J., Czimczik, C., Laird, D. & Sohi, S. (2009). Stability of biochar in soil, In Biochar for Environmental Management: Science and Technology; Lehmann, J., Stephen, J., Eds.; Earthscan Publ.: London, 183-205. 3. Yang, C.Q., Simms, J.R. (1995). Comparison of photoacoustic, diffuse reflectance and transmission infrared spectroscopy for

References ABEL, S. – PETERS, A. – TRINKS, S. – SCHONSKY, H. – FACKLAM, M. – WESSOLEK, G. 2013. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. In Geoderma , vol. 202 – 203 , pp. 183 – 191. BREWER, C.E. – ROHR, K.S. – SATRIO, J.A. – BROWN, R.C. 2014. Characterization of biochar from fast pyrolysis and gasification system. In Biomas Resources , vol. 36 , pp. 697 – 707. DOI: 10.1016/cp.12503. BRODOWSKI, S. – JOHN, B. – FLESSA, H. – AMELUNG, W. 2006. Aggregate − occluded black carbon in soil. In European Journal

carbon. In Carbon, vol. 47, 2009, no. 6, pp. 1466–1473. ISSN 0016-7061. EL-NAGGAR, A. – LEE, S. S. – RINKLEBE, J. – FAROOQ, M. – SONG, H. – SARMAH, A. K. – ZIMMERMAN, A. R. – AHMAD, M. – SHAHEEN, S.M. – OK, Y. S. 2019. Biochar application to low fertility soils: A review of current status, and future prospects. In Geoderma, vol. 337, 2019, pp. 536–554. ISSN 0016-7061. HORÁK, J. 2015. Testing biochar as a possible way to ameliorate slightly acidic soil at the research field located in the Danubian lowland. In Acta Horticulturae et Regiotecturae, vol. 18, 2015, no. 1, pp

processes. ACS Sustainable Chem Eng. 2014;2(6):1411-1419. DOI: 10.1021/sc400476j. [4] European Commission. Communication from the commission to European Parlament, the council, the European economic and social committee and the committee of the regions, on the 2017 list of Critical Raw Materials for the UE, COM (2017) 490 final. https://www.ec.europa.eu/transparency/regdoc/rep/1/2017/EN/COM-2017-490-F1-EN-MAIN-PART-1.PDF . [5] Dai L, Li H, Tan F, Zhu N, He M, Hu G. Biochar: a potential route for recycling of phosphorus in agricultural residues. Bioenergy. 2016

References ATKINSON, C.J., FITZGERALD, J.D., HIPPS, N.A.: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil, 337, 2010, 1-18. BREWER, C.E., HU, Y.Y., SCHMIDT-ROHR, K., LOYNACHAN, T.E., LAIRD, D.A., BROWN, R.C.: Influence of extent of pyrolysis on corn stover fast pyrolysis biochar and soil properties. Soil Biol. Biochem., 41, 2012, 1115-1122. DE LA ROSA, CH., PANEQUE, M., MILLER, A.Z., KNICKER, H.: Relating physical and chemical properties of four different biochars and their application

REFERENCES Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., Wessolek, G., 2013. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma, 202–203, 183–191. Agegnehu, G., Bass, A.M., Nelson, P.N., Bird, M.I., 2016. Benefits of biochar, compost and biochar–compost for soil quality, corn yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Tot. Environ., 543, 295–306. Ajayi, A.E., Horn, R., 2016. Modification of chemical and hydro-physical properties of two texturally differentiated