Search Results

1 - 10 of 1,809 items :

  • "approximation" x
Clear All

References [1] F. Armknecht, C. Elsner, M. Schmidt, Using the Inhomogeneous Simultaneous Approximation Problem for Cryptographic Design. AFRICACRYPT, 2011, pp. 242-259. →18 [2] A. Frank, É. Tardos, An application of simultaneous Diophantine approximation in combinatorial optimization, Combinatorica, 7, 1 (1987) 49-66. →18 [3] A. Y. Khinchin, Continued Fractions, Translated from the third (1961) Russian edition, Reprint of the 1964 translation, Dover, Mineola, NY, 1997. →20 [4] Sh. Kim, S. Östlund, Simultaneous rational approximations in the study of dynamical

. G.: Bernstein Polynomials, in: Mathematical Expositions, Vol. 8, University of Toronto Press, Toronto, 1953. [6] PˇALTINEANU, G.: Clase de mult¸imi de interpolare ˆın raport cu un subspat¸iu de funct¸ii continue, in: Structuri de ordineˆın analiza funct¸ionalˇa, Vol. 3, Editura Academiei Romˇane, Bucure¸sti, 1992, pp. 121-162. [7] PROLLA, J. B.: A generalized Bernstein approximation theorem, Math. Proc. Cambridge Phil. Soc. 104 (1988), 317-330.

References [1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics , volume 9150 of Lecture Notes in Computer Science , pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17. [2] Anna Gomolińska. A comparative study of some generalized rough approximations

, vol. 32, pp. 57-61. Elsuwege, P. V. & Petrov, R. (2014), ‘Setting the Scene: Legislative Approximation and Application of EU Law in the Eastern Neighbourhood of the European Union, ’ in P. V. Elsuwege & R. Petrov (eds.) Legislative Approximation and Application of EU Law in the Eastern Neighbourhood of the European Union: Towards a Common Regulatory Space? London & New York: Routledge, pp. 1-9. EP (2007), Negotiation mandate: enhanced EC-Ukraine agreement. European Parliament recommendation of 12 July 2007 to the Council on a negotiation mandate for a new

order approximation method based on stability boundary locus for fractional order derivative/integrator operators, ISA Transactions 62 : 154–163. Djouambi, A., Charef, A. and Besançon, A.V. (2007). Optimal approximation, simulation and analog realization of the fundamental fractional order transfer function, International Journal of Applied Mathematics and Computer Science 17 (4): 455–462, DOI: 10.2478/v10006-007-0037-9. Du, B., Wei, Y., Liang, S. and Wang, Y. (2017). Rational approximation of fractional order systems by vector fitting method, International Journal

positivity and stabilization of linear dynamic systems, Proceedings of the Conference on Simulation, Designing and Control of Foundry Processes, Kraków, Poland , pp. 33-39. Kaczorek, T. (1998). Vectors and Matrices in Automation and Electrotechnics , WNT, Warsaw, (in Polish). Kaczorek, T. (2011). Selected Problems of Fractional System Theory , Springer-Verlag, Berlin. Kaczorek, T. (2013). Approximation of positive stable continuous-time linear systems by positive stable discrete-time systems, Pomiary Automatyka Robotyka 59 (2): 359-364. Kaczorek, T. (2011). Necessary

. (2008). Extended Jacobian inverse kinematics and approximation of distributions, in J. Lenarcic and Ph. Wenger (Eds), Advances in Robot Kinematics , Springer Science+Business Media, Berlin, pp. 137-146. Klein, Ch. A. and Huang, C. (1983). Review of the pseudoinverse control for use with kinematically redundant manipulators, IEEE Transactions on Systems, Man and Cybernetics   13 (3): 245-250. Klein, Ch. A., Chu-Jenq, C. and Ahmed, Sh. (1995). A new formulation of the extended Jacobian method and its use in mapping algorithmic singularities for kinematically

References [1] BERESNEVICH, V.: Rational points near manifolds and metric Diophantine approximation, Ann. of Math. (2) 175 (2012), No. 1, 187-235. [2] BERNIK, V. I.: Simultaneous approximation of zero by integer polynomials, Izv. Akad.Nauk SSSR, Ser. Mat. 44 (1980), 24-45. [3] BUDARINA, N.-DICKINSON, D.-BERNIK, V.: Simultaneous Diophantine approximation in the real, complex and p-adic fields, Math. Proc. Cambridge. Philos. Soc. 149 (2010), No. 2, 193-216. [4] BERNIK, V. I.-KALOSHA, N. I.: Approximation of zero by integer polynomials in space R × C × Qp

References [1] S. M. Anvariyeh, S. Mirvakili and B. Davvaz, Pawlak’s approximations in Γ- semihypergroups , Computers and Mathematics with Applications 60 (2010) 45-53. [2] S. M. Anvariyeh and B. Davvaz, Strongly transitive geometric spaces associated to hypermodules , Journal of Algebra, 322 (2009) 1340-1359. [3] R. Biswas and S. Nanda, Rough groups and subgroups , Bull. Polish Acad. Sci. Math. 42 (1994) 251-254. [4] Z. Bonikowski, E. Bryniarski, U. Wybraniec-Skardowska Extensions and intentions in the rough set theory , Inform. Sci. 107 (1998) 149-167. [5

of Automated Reasoning, 55(3):191-198, 2015. doi: 10.1007/s10817-015-9345-1. [3] G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, 6th edition, 2008. [4] Adolf Hurwitz. Ueber die angenäherte Darstellung der Irrationalzahlen durch rationale Brüche. Mathematische Annalen, 39(2):279-284, B.G.Teubner Verlag, Leipzig, 1891. [5] Hermann Minkowski. Diophantische Approximationen: eine Einf¨uhrung in die Zahlentheorie. Teubner, Leipzig, 1907. [6] Ivan Niven. Diophantine Approximation. Dover, 2008. [7] Tetsuya Tsunetou, Grzegorz