Search Results

1 - 6 of 6 items :

Clear All

R eferences [1] Hörrak, U. (2001). Air ion mobility spectrum at a rural area . PhD thesis, University of Tartu, Estonia. [2] Aplin, K.L., Harrison, R.G. (2001). A self-calibrating programable mobility spectrometer for atmospheric ion measurements. Review of Scientific Instruments , 72 (8), 3467-3469. [3] Aplin, K.L., Harrison, R.G. (2000). A computer-controlled Gerdien atmospheric ion counter. Review of Scientific Instruments , 71 (8), 3037-3041. [4] Harrison, R.G., Aplin, K.L. (2000). A multimode electrometer for atmospheric ion measurements. Review of

, A., Salm, J., Tammet, H. 1994. Mobility spectrum of air ions at Tahkuse Observatory. – Journal of Geophysical Research, 99, 10697. Hõrrak, U., Salm, J., Tammet, H. 1998. Bursts of intermediate ions in atmospheric air. – Journal of Geophysical Research, 103, 13909. Hõrrak, U., Salm, J., Tammet, H. 2000. Statistical characterization of air ion mobility spectra at Tahkuse Observatory: Classification of air ions. – Journal of Geophysical Research, 105, 9291. IPCC. 2014. Climate Change 2013 – The Physical Science Basis. – Intergovernmental Panel on Climate Change (ed

.H., Williams A.L., Leonhard M.J. (2018). Exposure of laboratory animals to small air ions: a systematic review of biological and behavioral study. BioMed Eng OnLine, 17: 72. Banhazi T., Aland A., Hartung J. (2018). Editors. Air quality and livestock farming. CRC Press, 372 pp. Brigmon R.L., Mather F.B. (1992). Seasonal temperature and its influence on plasma corticosteone, triiodothyronine, thyroxine, plasma protein and packed cell volume in mature male chickens. Comp. Broch. Physiol., 102: 289–293. Cambra-López M., Winkel A., Harn J. Van, Ogink N.W.M., Aarnink A.J.A. (2009

:// [in Slovak] [5] Jakober, C., Philips, T. (2008). Evaluation of Ozone Emissions From Portable Indoor Air Cleaners. Electrostatic Precipitators and Ionizers. Staff Technical Report. California Environmental Protection Agency, Air Resources Board, 33 p. [6] Daniels, S.L. (2007). On the qualities of the air as affected by radiant energies (photocatalyt ionization processes for remediation of indoor environments). Environmental Engineering Science, 6 (3), 329-342. [7] Wu, C.C., Lee, G.W.M. (2004). Oxidation of volatile organic compounds by negative air ions. Atmospheric

, Zacharopoulou T,. Small SRS photon field profile dosimetry performed using a PinPoint air ion chamber, a diamond detector, a novel silicon-diode array (DOSI), and polymer gel dosimetry. Analysis and intercomparison. Med Phys. 2008;35(10):4640-4648. doi: 10.1118/1.2977829 32. Popple R, Wu X, Kraus J, Thomas E, Brezovich I. SU-F-T-570: Comparison of Synthetic Diamond, Microionization Chamber, and Radiochromic Film for Absolute Dosimetry of VMAT Radiosurgery. Med Phys. 2016;43(6Part22):3594-3594. doi: 10.1118/1.4956755

. Ganley, J.C., Riechmann, K.L., Seebauer, E.G. & Masel, R.I. (2004). Porous anodic alumina optimized as a catalyst support for microreactors, J. Catal. 227, 26–32. DOI: 10.1016/j.jcat.2004.06.016. 11. Yun, S.J. & Seo, Y. (2013). Removal of bacteria and odor gas by an alumina support catalyst and negative air ions. J. Aerosol Sci. 58, 33–40. DOI: 10.1016/j.jaerosci.2012.12.006. 12. Rodrigues, R., Isoda, N., Gonçalves, M., Figueiredo, F.C.A., Mandelli, D. & Carvalho, W.A. (2012). Effect of niobia and alumina as support for Pt catalysts in the hydrogenolysis of glycerol