Search Results

1 - 10 of 22 items :

  • "Zechstein" x
Clear All

actualistic model. Marine Geology 11, 123-144. Clark, D.N., 1986. The distribution of porosity in Zechstein carbonates. [In:] J. Brooks, Goff, J.C, & Hoorn, B. van (Eds.). Habitat of Palaeozoic gas in N.W. Europe. Geological Society, London, Special Publication 23, 167-203. Esteban, M. & Klappa, C.F., 1983. Subaereal exposure. [In:] Scholle, Bebout & Moore (Eds): Carbonate depositional environments. American Association of Exploration Geologists Memoir 33, 1-54. Geluk, M.C., 1999. Late Permian (Zechstein) rifting in The Netherlands: models and implications for

Sedimentary Research 66, 447–458. Conybeare, C.E.B., 1949. Stylolites in Pre-Cambrian quartzite. Journal of Geology 57, 83–85. Coogan, A.H., 1970. Measurement of compaction in oolitic grainstone. Journal of Sedimentary Petrology 40, 921–929. Czekański, E., Kwolek, K. & Mikołajewski, Z., 2010. Złoża węglowodorów w utworach cechsztyńskiego dolomitu głównego (Ca2) na bloku Gorzowa [Hydrocarbon fields in the Zechstein Main Dolomite (Ca2) of the Gorzów Block (NW Poland)]. Przegląd Geologiczny 58, 695–703. Dadlez, R. & Jaroszewski, W., 1994. Tektonika [ Tectonics

-Zn-Ag vein deposits: isotopic and fluid inclusion evidence for formation during the Mesozoic extension in the Pyrenees of Spain. Econ. Geol. 91, 497–506. Jowett E.C. 1986: Genesis of Kupferschiefer Cu-Ag deposits by convective flow of Rotliegendes brines during Triassic rifting. Econ. Geol. 81, 1823–1837. Kampschulte A., Buhl D. & Strauss H. 1998: The sulfur and strontium isotopic composition of Permian evaporites from the Zechstein basin, northern Germany. Geol. Rdsch. 87, 192–199. Kießling T. 2007: Die Flussspatgewinnung bei Ilmenau im Thüringer Wald. Bergbau 3


The article presents the influence of natural and anthropogenic factors on the chemical and physical properties of surface water and groundwater in the area of the city of Inowrocław. It has been shown that the properties of the waters were most strongly affected by the specific geological structure (the city is located within the Zechstein salt dome) as well as the long-term influence of a salt mine and soda plant. The composition of most analysed samples was dominated by Ca2+, Na+ and Cl ions. In places of heavy industrial activity, some water parameters were several time higher than permissible limit values according to Polish standards. It is concluded that, due to the threat to the city’s drinking groundwater resources and fertile soils, the surface water and groundwater in the area in question require permanent monitoring.

underground storage, Minerals Resources Management, 2008, t. 24, z. 2/3, 387-397. [5] KAWALEC E., Seismic inversion of salt deposits inhomogeneities recognition for the construction of underground reservoirs, Wydawnictwa AGH, Kraków 2009. [6] KRYNICKI T., Elastic feature of Zechstein rocks, Kwart. Geol., 1980, t. 24, No. 3. [7] MARKIEWICZ A., BANASZAK A., History of geological surveys of “Kazimierzów” - the oldest rock-salt deposit (“Sieroszowice I” mining area), Czasopismo Naukowo-Techniczne Górnictwo Odkrywkowe, Wrocław, 2005, Vol. XLVII, No. 2, 15-21. [8] MASCIMENTO T

Y.Z., PÜTTMANN W. 2001: Oxidation of organic matter in the transition zone of the Zechstein Kuperschiefer from the Sangerhausen Basin, Germany. Energy & Fuels 15, 817-829. SIKORA W.S., BUDEK L., EILMES J., 1978: Organic matter in kaolin from Kalno near Świdnica (Lower Silesia). Mineralogia Polonica 9, 2, 23-37. de la TORRE J., LORES M.T., BASTIDA J., MONTÓN J.B., 1996: Oxidation of organic matter in powdered clays at temperatures lower than dehydroxylation temperature of clay minerals. British Ceramic Transactions 95, 5, 194-198. VOLKMAN J.K., MAXWELL J

charakteristische Tonsteinlager in der Flözgruppe des unteren Hangendzuges (Westfal A) und ihre Bedeutung als Leitschichten im Waldenburger Bergbaugebiet (Niederschlesien). Neues Jahrbuch für Geologie und Paläontologie 7. HOEHNE K., 1953: Ein neues Vorkommen von chromhatligen alumohydrocalcit im niederschlesischen Bergbaugebiet. Neues Jahrbuch für Mineralogie, Monatshefte 1, 45-50. KOWALSKI W., 1977: Geochemia, mineralogia i geneza dolnośląskich złóż i wystąpień barytowych. Archiwum Mineralogiczne 33, 1, 107-160. KUCHA H., 1982: Platinum-group metals in the Zechstein copper

0166-5162(01)00037-4. [6] GODYŃ K., Microscopic research of the pore space of dolomites of the Zechstein copper-bearing formation of Polkowie area, Transactions of IMG PAN, 2016, 18, 3, 43-53. [7] JIANG J.Y., CHENG Y.P., WANG L., LI W., WANG L., Petrographic and geochemical effects of sill intrusions on coal and their implications for gas outbursts in the Wolonghu Mine, Huaibei Coalfield, China, International Journal of Coal Geology, 2011, 88, 1, 55-66, DOI: 10.1016/j.coal.2011.08.007. [8] KLOBES P., MEYER K., MUNRO R.G., Porosity and Specific Surface Area

Precambrian and Paleozoic reservoirs in the light of petrophysical analysis, Baza publikacji EAGE EartDoc, 74th EAGE Conference & Exhibition incorporating SPE EUROPEC, 4-7 July, Kopenhaga, Dania, 2012, D043, 1-5. [8] JAWOROWSKI K., MIKOŁAJEWSKI Z., Oil- and gas-bearing sediments of the Main Dolomite (Ca2) in the Międzychód region: a depositional model and the problem of the boundary between the second and third depositional sequences in the Polish Zechstein Basin, Geological Review, 2007, 55, 12/1, 1017-1024. [9] JOSH M., ESTEBAN L., DELLE PIANE C., SAROUT J., DEWHURST D

.M., Baba, A., Atilla, V. & İnanlı, M., 2014. Types of the scaling in hyper saline geothermal system in northwest Turkey. Geothermics 50, 1–9. Garlicki, A. & Szybist, A., 1986. Salinarne osady polskiego cechsztynu z solami potasowo–magnezowymi [Saline deposits of Polish Zechstein with potash salt]. Gospodarka Surowcami Mineralnymi 2, 389–404 (in Polish, English summary). Górecki, W. (Ed.), 1995. Atlas zasobów energii geotermalnej na Niżu Polskim [ Atlas of geothermal resources in the Polish Lowlands ]. Geosynoptics Society GEOS. AGH University of Science and