Search Results

1 - 10 of 10 items :

  • "X-ray spectra" x
Clear All

, A. D., Meigs, A. G., Lawson, K. D., Zastrow, K. -D., Barnsley, R., Coffey, I. H., & JET-EFDA Contributors. (2006). Atomic modeling and instrumentation for measurement and analysis of emission in preparation for the ITER-like wall in JET. Rev. Sci. Instrum., 77, 10F520. http://dx.doi.org/10.1063/1.2236278. 4. Ralchenko, Y., Tan, J. N., Gillaspy, J. D., & Pomeroy, J. M. (2006). Accurate modeling of benchmark x-ray spectra from highly charged ions of tungsten. Phys. Rev. A, 74, 042514. http://dx.doi.org/10.1103/Phys-RevA.74.042514. 5. Clementson, J., Beiersdorfer, P

, M. (1998).Diagnostic X-ray spectra: a comparison of spectra generated by different computational methods with a measured spectrum. Med. Phys., 25, 114-120. 5. Caon, M., Bibbo, G., Pattison, J., & Bhat, M. (1998). The effect on dose to computed tomography phantoms of varying the theoretical X-ray spectrum: a comparison of four diagnostic spectrum calculating codes. Med. Phys., 25, 1021-1027. 6. Ay, M. R., Sarkar, S., Shahriari, M., & Zaidi, H. (2005).Assessment of different computational models for generation of X-ray spectra in diagnostic radiology and mammography

. Normalized glandular dose (DgN) coefficients for arbitrary X-ray spectra in mammography: computer fit values of Monte-Carlo derived data. Med Phys. 2002; 29(5): 869-875. Burch A, Goodman DA. A pilot survey of radiation doses received in the United Kingdom Breast screening programme. Br J Radiol. 1998; 71: 517-527. Cranley K, Gilmore B, Fogarty G, Desponds L. Catalogue of diagnostic X-ray spectra and other data. Electronic Version prepared by D Sutton. Institute of Physics and Engineering in Medicine Report No. 78; 1997. Dance DR. Monte Carlo calculation of conversion

quality - Standard gravimetric measurement method for the determination of the PM2.5 mass fraction of suspended particular matter. 12. Vekemans, B., Janssens, K., Vincze, L., Adams, F., & Van Espen, P. (1994). Analysis of X-ray spectra by iterative least squares (AXIL): new developments. X-Ray Spectrom., 23, 278-285. 13. Rogula-Kozlowska, W., Klejnowski, K., Zwozdziak, A., Sowka, I., & Trzepla-Nabaglo, K. (2011). Elemental composition and sources of PM2.5 in three Silesian cities, Wroclaw, Zabrze and Katowice, Poland. Nauka, Przyroda, Technologie, 5(4), 1-8. 14. Putaud

10 fraction of suspended particulate matter – reference method and field test procedure to demonstrate reference equivalence of measurement methods. 19. PN-EN 14907. (2006). Ambient air quality-standard gravimetric measurement method for the determination of the PM2.5 mass fraction of suspended particular matter. 20. http://www.canberra.com (accessed 12 August 2015). 21. Vekemans, B., Janssens, K., Vincze, L., Adams, F., & Van Espin, P. (1994). Analysis of X-ray spectra by iterative least squares (AXIL): new developments. X-Ray Spectrom ., 23 , 278–285. 22

., Syrocki, Ł., Rzadkiewicz, J., & Polasik, M. (2015). The K x-ray line structures for a warm dense copper plasma. High Energy Density Phys., 15, 8-11. DOI: 10.1016/j. hedp.2015.03.005. 12. Polasik, M. (1995). Systematic multiconfi guration- Dirac-Fock study of the x-ray spectra accompanying the ionization in collision processes: The structure of the Kα1,3L0Mr lines. Phys. Rev. A, 52, 227. DOI: 10.1103/PhysRevA.52.227. 13. Grant, I. P. (1984). Relativistic atomic structure theory: Some recent work. Int. J. Quantum Chem., 25, 23. DOI: 10.1002/qua.560250104. 14. Dyall, K. G

calculations. Nuclear Tracks and Radiation Measurements 10(4–6): 639–646, DOI 10.1016/0735-245X(85)90070-5. [14] Guérin G and Mercier N, 2011. Determining gamma dose rates by field gamma spectroscopy in sedimentary media: results of Monte Carlo simulations. Radiation Measurements 46(2): 190–195, DOI 10.1016/j.radmeas.2010.10.003. http://dx.doi.org/10.1016/j.radmeas.2010.10.003 [15] Guimarães CC, Moralles M and Okuno E, 2008. Performance of GEANT4 in dosimetry applications: Calculation of X-ray spectra and kerma-to-dose equivalent conversion coefficients. Radiation

central Europe. Atmos. Chem. Phys., 14 (18), 9567–9581. DOI: 10.5194/acp-14-9567-2014. 33. Holynska, B., Najman, J., Ostachowicz, B., Ostachowicz, J., Trabska, J., & Wegrzynek, D. (1996). Analytical application of multifunctional system of EDXRF. J. Trace Microprobe Tech., 14 (1), 119–130. 34. Vekemans, B., Janssens, K., Vincze, L., Adams, F., & Van Espen, P. (1994). Analysis of X-ray spectra by iterative least squares (AXIL). New developments. X-Ray Spectrom., 23 (6), 278–285. DOI: 10.1002/xrs.1300230609. 35. Major, I., Furu, E., Janovics, R., Hajdas, I., Kertész

, respectively. All the samples are composed of particles in nano range which are spherical in shape as clearly seen from the SEM images. Further, it is clear that the particle size goes on increasing with an increase in calcination temperature. Comparing Fig. 3 and Fig. 4 , the difference in particle size is clearly visible and again in good agreement with the XRD calculations. Fig. 4 SEM images of Fe-doped ZnO nanoparticles calcined (a) 450 °C, (b) 600 °C and (c) 750 °C. Fig. 5 shows energy dispersive X-ray spectra (EDS) of pure and Fe-doped ZnO nanoparticles which

selected samples. Elemental analysis was done using an INCA Energy EDS X-ray microanalyzer (Oxford Instruments Analytical, Great Britain) connected to a Vega 3 SEM, without sputtering. For each sample, five X-ray spectra were recorded in five micro-areas (of 0.05 mm 2 ) and the average value of elements content and standard deviation was calculated. 2.3.2 Thermogravimetric analysis (TG/DTG) Samples of aerogel, coatings, and unmodified and coated fabrics were subjected to thermogravimetric (TG) analysis using a TG 209 F1 Libra apparatus (Netzsch, Germany) with 0.1 μg