Search Results

1 - 10 of 606 items :

Clear All
Effects of daidzein on testosterone secretion in cultured immature mouse testis

impact Leydig cell differentiation. Biol Reprod. 2010; 83: 488-501. 11. Cherradi N, Rossier MF, Vallotton MB, Timberg R, Friedberg I, Orly J, et al. Submitochondrial distribution of three key steroidogenic proteins (steroidogenic acute regulatory protein and cytochrome P450scc and 3β-hydroxysteroid dehydrogenase isomerase enzymes) upon stimulation by intracellular calcium in adrenal glomerulosa cells. J Biol Chem. 1997; 272: 7899-907. 12. Stocco DM. Recent advances in the role of StAR. Rev Reprod. 1998; 3:82-5. 13. Walsh

Open access
Star Coloring Outerplanar Bipartite Graphs

R eferences [1] M.O. Albertson, G.C. Chappell, H.A. Kierstead, A. Kündgen and R. Ramamurthi, Coloring with no 2 -colored P 4 ’s , Electron. J. Combin. 11 (2004) #R26. [2] O. V. Borodin, On acyclic colorings of planar graphs , Discrete Math. 25 (1979) 211–236. doi:10.1016/0012-365X(79)90077-3 [3] M. Chen, A. Raspaud and W. Wang, 6 -star-coloring of subcubic graphs , J. Graph Theory 72 (2013) 128–145. doi:10.1002/jgt.21636 [4] G. Fertin, A. Raspaud and B. Reed, Star coloring of graphs , J. Graph Theory 47 (2004) 163–182. doi:10

Open access
Star Coloring of Subcubic Graphs

and J.Y. Cai, The cyclic coloring problem an estimation of sparse Hessian matrices, SIAM Journal of Algebraic and Discrete Methods 7 (1986) 221-235. doi:10.1137/0607026 [5] T.F. Coleman and J.J. Mor´e, Estimation of sparse Hessian matrices and graph coloring problems, Math. Program. 28(3) (1984) 243-270. doi:10.1007/BF02612334 [6] G. Fertin, A. Raspaud and B. Reed, Star coloring of graphs, J. Graph Theory 47 (2004) 163-182. doi:10.1002/jgt.20029 [7] A.H. Gebremedhin, F. Manne and A. Pothen, What color is your Jacobian

Open access
List Star Edge-Coloring of Subcubic Graphs

R eferences [1] O.V. Borodin, Criterion of chromaticity of a degree prescription , in: Abstracts of IV All-Union Conf. on Theoretical Cybernetics, Novosibirsk (1977) 127–128, in Russian. [2] L. Bezegova, B. Lužar, M. Mockovčiaková, R. Soták and R. Škrekovski, Star edge coloring of some classes of graphs , J. Graph Theory 81 (2016) 73–82. doi:10.1002/jgt.21862 [3] K. Deng, X.S. Liu and S.L. Tian, Star edge coloring of trees , J. Shandong Univ. Nat. Sci. 46 (2011) 84–88, in Chinese. [4] Z. Dvořák, B. Mohar and R. Šámal, Star

Open access
Strong ƒ-Star Factors of Graphs

, Star partitions of graphs, J. Graph Theory 25 (1997) 185-190. doi:10.1002/(SICI)1097-0118(199707)25:3h185::AID-JGT2i3.0.CO;2-H [5] J. Folkman and D.R. Fulkerson, Flows in infinite graphs, J. Combin. Theory 8 (1970) 30-44. doi:10.1016/S0021-9800(70)80006-0 [6] M. Las Vergnas, An extension of Tutte’s 1-factor theorem, Discrete Math. 23 (1978) 241-255. doi:10.1016/0012-365X(78)90006-7 [7] A.K. Kelmans, Optimal packing of induced stars in a graph, RUTCOR Research Report 26-94, Rutgers University (1994) 1

Open access
Odd mean labeling for two star graph

1 Introduction All graphs in this paper are finite, simple and undirected. Terms not defined here are used in the sense of Harary [ 1 ]. In 1966, Rosa [ 3 ] introduced β −valuation of a graph. Golomb subsequently called such a labeling graceful. In 2015, Maheswari and Ramesh [ 2 ] proved the two star graph G = K 1, m ∧ K 1, n is a mean graph if and only if | m − n | ≤ 4. We prove the two star graph G = K 1, m ∧ K 1, n is an odd mean graph if and only if | m − n | ≤ 3. 2 Odd mean labeling Definition 1 A graph G = ( V , E ) with p

Open access
An Improved Bound for the Star Discrepancy of Sequences in the Unit Interval

REFERENCES [1] FAURE, H.: Good permutations for extreme discrepancy , J. Number Theory 42 (1992), no. 1, 47–56. [2] KUIPERS, L.—NIEDERREITER, H.: Uniform Distribution of Sequences , John Wiley, New York, 1974. [3] LARCHER, G.: On the star discrepancy of sequences in the unit interval , J. Complexity 31 (2015), no. 3, 474–485. [4] LIARDET, P.: Discrepance sur le cercle , Primaths I, Univ. Marseille, 1979, 7–1. [5] NIEDERREITER, H.: Random Number Generation and Quasi-Monte Carlo Methods . In: CBMS-NSF Regional Conference

Open access
Antidotal activity of Averrhoa carambola (Star fruit) on fluoride induced toxicity in rats

, Kasperczyk S, Blaszczyk I. (2007). Infl uence of extended exposure to sodium fl uoride and caff eine on the activity of carbohydrate metabolism enzymes in rat blood serum and liver. Fluoride 40: 62-66. Hassan HA, Yousef MI. (2009). Mitigating eff ects of antioxidant properties of black berry juice on sodium fl uoride induced hepato-toxicity and oxidative stress in rats. Food Chem Toxicol 47: 2332-2337. Hidaka M, Fujita K, Ogikubo T, Yamasaki K, Iwakiri T, Okumura M, Kodama H, Arimori K. (2004). Potent inhibition by star fruit of human

Open access
Star-Cycle Factors of Graphs

Abstract

A spanning subgraph F of a graph G is called a star-cycle factor of G if each component of F is a star or cycle. Let G be a graph and f : V (G) → {1, 2, 3, . . .} be a function. Let W = {v ∈ V (G) : f(v) = 1}. Under this notation, it was proved by Berge and Las Vergnas that G has a star-cycle factor F with the property that (i) if a component D of F is a star with center v, then degF (v) ≤ f(v), and (ii) if a component D of F is a cycle, then V (D) ⊆ W if and only if iso(G − S) ≤ Σx∈S f(x) for all S ⊂ V (G), where iso(G − S) denotes the number of isolated vertices of G − S. They proved this result by using circulation theory of flows and fractional factors of graphs. In this paper, we give an elementary and short proof of this theorem.

Open access
Critical Graphs for R(Pn, Pm) and the Star-Critical Ramsey Number for Paths

References [1] L. Gerencsér and A. Gyárfás, On Ramsey-type problems, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 10 (1967) 167-170. [2] J. Hook, The classification of critical graphs and star-critical Ramsey numbers (Ph.D. Thesis, Lehigh University, 2010). [3] J. Hook and G. Isaak, Star-critical Ramsey numbers, Discrete Appl. Math. 159 (2011) 328-334. doi:10.1016/j.dam.2010.11.007 [4] R.J. Faudree, S.L. Lawrence, T.D. Parsons and R.H. Schelp, Path-cycle Ramsey numbers, Discrete Math. 10 (1974

Open access