Search Results

1 - 2 of 2 items :

  • "Side Thruster" x
Clear All


The hydrodynamic effect of appendages for high-speed passenger vessels, such as Ro-Pax, Ro-Ro and cruiser vessels, is very severe and, therefore, it is essential to carry out the design of appendages for high-speed passenger vessels from the preliminary design stage to the final detail design stage through a full survey of the reference vessels together with sufficient technical investigation. Otherwise, many problems would be caused by mismatches between the appendages and the hull form. This paper investigates the design characteristics of some appendages, such as the side thruster, the shaft-strut, and the stern wedge, based on the design experience accumulated at Samsung, on CFD, and on model test results for high-speed passenger vessels. Further to this investigation, some practical and valuable design guidelines for such appendages are suggested.


The auto-berthing of a ship requires excellent control for safe accomplishment. Crabbing, which is the pure sway motion of a ship without surge velocity, can be used for this purpose. Crabbing is induced by a peculiar operation procedure known as the push-pull mode. When a ship is in the push-pull mode, an interacting force is induced by complex turbulent flow around the ship generated by the propellers and side thrusters. In this paper, three degrees of freedom equations of the motions of crabbing are derived. The equations are used to apply the adaptive backstepping control method to the auto-berthing controller of a cruise ship. The controller is capable of handling the system nonlinearity and uncertainty of the berthing process. A control allocation algorithm for a ship equipped with two propellers and two side thrusters is also developed, the performance of which is validated by simulation of auto-berthing.