Search Results

1 - 4 of 4 items :

  • "Polydimethylsiloxane (PDMS)" x
Clear All


In the present work, two geometrically similar passive geometries with dumbbell shape were designed to perturb the dominating viscous forces in the low Reynolds number (Re) flows of the fluids. The geometries were designated as PDM-I and PDM-II, in which all the linear dimensions were related by a constant scale factor of two. Mixing efficiencies and pressure drops of the species at various Reynolds number (Re) were calculated to estimate the scaling effect validations. Finally, the geometrically similar PDM geometries were fabricated in Polydimethylsiloxane (PDMS) polymer to evaluate the scaling effect on the mixing efficiencies of the dyes and validated with the simulation results of species mixing.


The primary cause of skin cancer is believed to be a long exposure to solar ultraviolet radiation (UV-R) crossed with the amount of skin pigmentation in the population. It is believed that in childhood and adolescence 80% of UV-R gets absorbed, whilst in the remaining 20% gets absorbed later in the lifetime. This suggests that proper and early photoprotection may reduce the risk of subsequent occurrence of skin cancer. Textile and clothing are the most suitable interface between environment and human body. It can show UV protection, but in most cases it does not provide full sun screening properties. UV protection ability highly depends on large number of factors such as type of fibre, fabric surface and construction, type and concentration of dyestuff, fluorescent whitening agent (FWA), UV-B protective agents, as well as nanoparticles, if applied. Based on electronically excited state by energy of UV-R (usually 340-370 nm), the molecules of FWAs show the phenomenon of fluorescence giving to white textiles high whiteness of outstanding brightness by reemitting the energy at the blue region (typically 420-470 nm) of the spectrum. By absorbing UV-A radiation, optical brightened fabrics transform this radiation into blue fluorescence, which leads to better UV protection. Natural zeolites are rock-forming, microporous silicate minerals. Applied as nanoparticles to textile surface, it scatters the UV-R resulting in lower UV-A and UV-B transmission. If applied with other UV absorbing agents, e.g. FWAs, synergistic effect occurs. Silicones are inert, synthetic compounds with a variety of forms and uses. It provides a unique soft touch, is very resistant to washing and improves the property of fabric to protect against UV radiation. Therefore, the UV protective properties of cotton fabric achieved by light conversion and scattering was researched in this paper. For that purpose, the stilbene-derived FWAs were applied on cotton fabric in wide concentration range without/with the addition of natural zeolite or silicone- polydimethylsiloxane. UV protection was determined in vitro through ultraviolet protection factor. Additionally, the influence to fabric whiteness and hand was researched

Polydimethylsiloxane: a new contrast material for localization of occult breast lesions

Background. The radioguided localization of occult breast lesions (ROLL) technique often utilizes iodinated radiographic contrast to assure that the local injection of 99mTc-MAA corresponds to the location of the lesion under investigation. However, for this application, this contrast has several shortcomings. The objective of this study was to evaluate the safety, effectiveness and technical feasibility of the use of polydimethylsiloxane (PDMS) as radiological contrast and tissue marker in ROLL.

Materials and methods. The safety assessment was performed by the acute toxicity study in Wistar rats (n = 50). The radiological analysis of breast tissue (n = 32) from patients undergoing reductive mammoplasty was used to verify the effectiveness of PDMS as contrast media. The technical feasibility was evaluated through the scintigraphic and histologic analysis.

Results. We found no toxic effects of PDMS for this use during the observational period. It has been demonstrated in human breast tissue that the average diameter of the tissue marked by PDMS was lower than when marked by the contrast medium (p <0.001). PDMS did not interfere with the scintigraphic uptake (p = 0.528) and there was no injury in histological processing of samples.

Conclusions. This study demonstrated not only the superiority of PDMS as radiological contrast in relation to the iodinated contrast, but also the technical feasibility for the same applicability in the ROLL.


Although liquid-liquid extraction methods are currently being applied in many areas such as analytical chemistry, biochemical engineering, biochemistry, and biological applications, accessibility and usability of microfluidics in practical daily life fields are still bounded. Suspended microfluidic devices have the potential to lessen the obstacles, but the absence of robust design rules have hampered their usage. The primary objective of this work is to design and fabricate a microfluidic device to quantitatively monitor the drug uptake of cancer cells. Liquid-liquid extraction is used to quantify the drug uptake. In this research work, designs and simulations of two different microfluidic devices for carrying out multiplex solution experiments are proposed to test their efficiency. These simplified miniaturized chips would serve as suspended microfluidic metabolites extraction platform as it allows extracting the metabolites produced from the cancer cells as a result of applying a specific drug type for a certain period of time. These devices would be fabricated by making polydimethylsiloxane (PDMS) molds from the negative master mold using soft lithography. Furthermore, it can leverage to provide versatile functionalities like high throughput screening, cancer cell invasions, protein purification, and small molecules extractions. As per previous studies, PDMS has been depicting better stability with various solvents and has proved to be a reliable and cost effective material to be used for fabrication, though the sensitivity of the chip would be analyzed by cross contamination and of solvents within the channels of device.