Search Results

1 - 10 of 1,768 items :

Clear All
Applications of Interpolation Operators

References Barnhil, R.E., “Representation and approximation of surfaces”, Mathematical Software III, New-York (1997): 68-119. Barnhil, R.E. and Gregory, J.A., “Polynomial interpolation to boundary data on triangles”, Math. Comput. 29(131), (1975): 726-735. Birkhoff, G., “Interpolation to boundary data in triangles”, J. Math. Anal. Appl. 42, (1973): 474-484. Coman, Gh. and Blaga P., “Interpolation operators with applications (2)”, Scientae Mathematicae Japonicae, 69, No. 1, (2009): 111

Open access
Weighted Lipschitz Estimates for Multilinear Commutator of Integral Operator

References [1] J. Alvarez, R. J. Babgy, D. S. Kurtz, and C. P_erez, Weighted estimates for commutators of linear operators, Studia Math., 104, (1993), 195-209. [2] S. Bloom, A commutator theorem and weighted BMO, Trans. Amer. Math. Soc., 292, (1985), 103-122. [3] H. Q Bui, Characterizations of weighted Besov and Triebel-Lizorkin spaces via temperatures, J. Func. Anal., 55, (1984), 39-62. [4] S. Chanillo, A note on commutators, Indiana Univ. Math. J., 31, (1982), 7-16. [5

Open access
On Uniform Exponential Dichotomy of Evolution Operators

. Math. Soc., Providence, R. I., 1974 [5] J. L. Massera and J. J. Schafer, Linear diferential equations and function spaces, Academic Press, New York and London, 1966 [6] M. Megan, On (h,k)-dichotomy of evolution operators in Banach spaces, Dynamic Systems and Applications, 5, (1996), 189-196 [7] M. Megan, B. Sasu, and A. L. Sasu, On nonuniform exponential dichotomy of evolution operators in Banach spaces, Integral Equations Operator Theory, 44, (2002), 71-78 [8] N. Van Minh, F. Rabiger, and R. Schnaubelt

Open access
Essentially generalized λ-slant Toeplitz operators

References [1] S.C. Arora and R. Batra, Generalized slant Toeplitz operators on H2, Math. Nachr. 278, No. 4, 347-355, 2005. [2] S.C. Arora and J. Bhola, Essentially slant Toeplitz operators, Banach J. Math. Anal., Iran, 3(2009), No. 2, 1-8. [3] Rubén A. Martínez-Avendaño, A generalization of Hankel operators, J. Func. Anal., 190, 2002, 418-446. [4] José Barría and P.R. Halmos, Asymptotic Toeplitz operators, Trans. Amer. Math. Soc., 273, 1982, 621-630. [5] Gopal Datt and Ritu

Open access
New Technical Challenges for Operators

5. References 1. CBOS, Zdrowie i prozdrowotne zachowania Polaków, Centrum Badania Opinii Społecznej, komunikat nr 138/2, Warszawa, 10. 2016, www.cbos.pl/SPISKOM.POL/2016/K_138_16.PDF (in Polish). 2. Gliwiński M., Janusz Szpytko J.: Approach to increase both operator’s safety and devices’ availability under operation. Journal of KONES, 17 (1), 2010. 3. GUS (Bank Danych Lokalnych), opracowanie własne na podstawie danych dostępnych na: https://bdl.stat.gov.pl/BDL/dane/podgrup/tablica . 4. Lalonde M.: A New perspective on the heath of

Open access
BOUNDEDNESS OF SUBLINEAR OPERATORS GENERATED BY CALDERÓN-ZYGMUND OPERATORS ON GENERALIZED WEIGHTED MORREY SPACES

References 1. Akbulut, A.; Guliyev, V.S.; Mustafayev, R. - Boundedness of the maximal operator and singular integral operator in generalized Morrey spaces, Preprint, Institute of Mathematics, AS CR, Prague. 2010-1-26, 1-15. 2. BURENKOV, V.I.; Guliev, V.S.; Guliev, G.V. - Necessary and sufficient conditions for the boundedness of the fractional maximal operator in local Morrey-type spaces, (Russian) Dokl. Akad. Nauk, 409 (2006), 443-447. 3. BURENKOV, V.I.; Guliyev, H.V.; Guliyev, V.S. - Necessary and

Open access
Properties of two variables Toeplitz type operators

References [1] Douglas, Ronald G. “On the operator equation S*XT = X and related topics.” Acta Sci. Math. (Szeged) 30 (1969): 19–32. Cited on 97 and 102. [2] Halmos, Paul R. Introduction to Hilbert Space and the theory of Spectral Multiplicity. New York, N. Y.: Chelsea Publishing Company, 1951. Cited on 102. [3] Jewell, Nicholas P., and Arthur R. Lubin. “Commuting weighted shifts and analytic function theory in several variables.” J. Operator Theory 1, no. 2 (1979): 207–223. Cited on 104. [4] Kosiek, Marek. Functional calculus

Open access
A generalization ofλ-slant Toeplitz operators

References [1] S.C. Arora and R. Batra, Generalized slant Toeplitz operators on H2, Math. Nachr. 278, No. 4, 347{355, 2005. [2] R. Martinez-Avenda~no, A generalization of Hankel operators, J. Func. Anal., 190, 2002, 418{ 446. [3] J. Barria and P.R. Halmos, Asymptotic Toeplitz operators, Trans. Amer. Math. Soc., 273, 1982, 621{630. [4] A. Brown and P.R. Halmos, Algebraic properties of Toeplitz operators, J. Reigne Angew. Math., 213, 1963, 89{102. [5] G. Datt and R. Aggarwal, On some generalizaions of Toeplitz operators via operator equations, General

Open access
Sharp Maximal Function Estimates and Boundedness for Commutator Related to Generalized Fractional Integral Operator

References 1. D. C. Chang, J. F. Li, and J. Xiao, Weighted scale estimates for Calderon- Zygmund type operators, Contemporary Mathematics, 446, (2007), 61-70. 2. S. Chanillo, A note on commutators, Indiana Univ. Math. J., 31, (1982), 7-16. 3. W. G. Chen, Besov estimates for a class of multilinear singular integrals, Acta Math. Sinica, 16, (2000), 613-626. 4. F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat., 7, (1987), 273

Open access
Invertible Operators on Banach Spaces

space of bounded linear operators. Formalized Mathematics , 12( 1 ):39–48, 2004. [9] Yasunari Shidama. The Banach algebra of bounded linear operators. Formalized Mathematics , 12( 2 ):103–108, 2004. [10] Kosaku Yoshida. Functional Analysis . Springer, 1980.

Open access