Search Results

1 - 10 of 21,503 items :

  • "Materials" x
Clear All

References Rosiek G., Misiewicz C., Bieniek J.: Behaviour of a corundum porous material in a living organism - Part I - Glass and Ceramics (Acta Ceramica) , 2, 1984, 41-44. Ryan G., Pandit A., Apatsidis D.P.: Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27 (2006), 2651-2670. Gradzka-Dahlke M.: The effect of structure on mechanical properties of porous sinters made of implant steel 316L. Engineering of Biomaterials , X, 65-66, 2007, 17-19. Takemoto M., Fujibayashi S., Neo M., Suzuki J., Kokubo T., Nakamura T

. Feraboli P., Miller M.: Damage resistance and tolerance of carbon/epoxy composite coupons subjected to simulated lightning strike, Composites: Part A 40 (2009) 954-967. 13. Hirano Y., Katsumata S., Iwahori Y., Todoroki A.: Artificial lightning testing on graphite/epoxy composite laminate, Composites: Part A 41 (2010) 1461-1470. 14. Muñoz R., Delgado S., González C., López-Romano B., Wang D.-Y., LLorca J.: Modeling lightning impact thermo-mechanical damage on composite materials, Applied Composite Materials 21 (2014) 149-164. 15. Dong Q., Guo Y., Sun X., Jia Y.: Coupled

.A., Theander H., Graphene feasibility and foresight study for transport infrastructures; Chalmers Industriteknik 2015. 8. Kumar N.A., Dar M.A., Gul R. Jong-Beom Baek, Graphene and molybdenum disulfide hybrids: synthesis and applications; Materials Today 18(5) (2015). 9. Soldano C., Mahmood A., Dujardin E., Production, properties and potential of grapheme; Carbon 48 (2010), 2127-2150. 10. Frank IW, Tanenbum DM, Van der Zande AM, McEuen P., Mechanical properties of suspensed grapheme sheets, In 51st International conference on electron, ion, and phton beam technology and

composite structural members: rehabilitation Log Čezsoški bridge. Brussels: FEHRL, 2009. 58 p. [14] Fifer Bizjak, K., Knez, F., Lernart, S., Slanc, K. (2016): Life-cycle assessment and repair of the railway transition zones of an existing bridge using geocomposite materials. Structure and infrastructure engineering , ISSN 1573-2479, Apr. 2016, pp. 1–14. [15] Roth, A., Kåberger, T. (2001): Making transport systems sustainable. Journal of Cleaner Production; 10 (2002), pp. 361–371. [16] EN ISO 14040:2006 Environmental

[1] Almeida R.M., Rodrigues A.S., J. Non-Cryst. Solids, 326–327 (2003), 405. [2] Que W., Hu X., Applied Phys., B88 (2007), 557. [3] Han Y., Lin J., Zhang H., Materials Letters, 54 (2002), 389. [4] Gonc, Alves R.R., Messaddeq Y., Atik M., Ribeiro S.J.L., Materials Research, 2 (1999), 11. [5] Kłonkowski A.M., Grobelna B., But S., Lis S., J. Non-Cryst. Solids, 352 (2006), 2213. [6] Tanner P.A., Yan B., Zhang H., J

REFERENCES [1] B alachowski L., S ikora Z., Mechanical properties of bottom ash – dredged material mixtures in laboratory tests , Studia Geotechnica et Mechanica, 2013, Vol. 35, No. 3. [2] C antré S. et al., Full-Scale Flume Experiments to Analyse the Surface Erosion Resistance of Dike Embankments Made of Dredged Materials , ASCE Journal of Waterway, Port, Coastal and Ocean Engineering, published online January 2017, . [3] C antré S., S aathoff F., Installation of fine-grained organic dredged materials


The hydrothermal synthesis of MCM-22 zeolite was carried out using silica, sodium aluminate and hexamethyleneimine, under static conditions at 150 °C for a period of 10 days, followed by washing with deionized water, drying overnight and calcination at 650 °C. The obtained material was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The XRD analysis evidenced that MCM-22 presented a well defined MWW structure. The FT-IR spectrum confirmed the efficiency of the hexamethyleneimine as an organic template used to direct the structure of the MCM-22 zeolite under static conditions. The SEM image indicated that the particles are spherical in shape, with a diameter of ca. 10 μm. The acid properties of the MCM-22 zeolite, as determined by n-buthylamine adsorption, were investigated in the temperature ranges of 105 to 300 °C and 300 to 525 °C, relative to medium and strong acid sites, respectively.

References Zieliński A.: Nowoczesne biostopy tytanu i kierunki ich rozwoju. Materiały i Technologie (Materials and Technologies) 2 (2004) 242-247. Świeczko-Żurek B., Ziemlański A.: Allergies to implant metal compounds. Advances in Materials Science No. 3, 9 (2009) 39-46. Malluche H. H.: Aluminium and bone disease in chronic renal failure. Nephrology Dialysis Transplantation 17 (2002) 21-24. Domingo J. L.: Vanadium and diabetes. What about vanadium toxicity? Molecular and Cellular Biochemistry 203 (2000) 185

://<617::AID-ADMA617>3.0.CO;2-3 [62] Argatov I.I., Díaz R.G., Sabina F.J., Int. J. Eng. Sci., 54 (2012), 42. [63] Coenen V.L., Alderson K.L., Phys. Stat. Sol. B, 248 (2011), 66. [64] Alderson A., Chem Ind., 10 (1999), 384. [65] Liu Q., Literature Review: Materials with Negative Poisson’s Ratios and Potential Applications to Aerospace and Defense, Defense Science and Technology Organization, Victoria, Australia, 2006 [66] Critchley R., Corni I

References [1] Curry J. F., Babuska T. F., Furnish T. A., Ping Lu, Adams D. P., Kustas A. B., Nation B. L., Dugger M. T., Chandross M., Clark B. G., Boyce B. L., Schuh C. A., Argibay N.: Achieving ultralow wear with stable nanocrystalline metals . Advanced Materials, 30/32. (2018) 1802026, 1–7. [2] Ashby M.: University of Cambridge and Granta Design , Cambridge, 2014. [3] Dodd-Frank Wall Street Reform and Consumer Protection Act . Public Law 111-203, July 21, 2010, 1375–2223.