Search Results

1 - 10 of 162 items :

  • "Lamiaceae" x
Clear All
Study on the current use of four important medicinal plants of Lamiaceae in Bulgaria

. 2013 , 37 , 230-247. [7]. Nedelcheva, A., Medicinal plants from an old Bulgarian medical book. Journal of Medicinal Plants Research . 2012 , 6(12), 2324-2339. [8]. Naghibi, F.; Mosaddegh, M. S.; Motamed, M.; Ghorbani, A., Labiatae Family in folk Medicine in Iran:from Ethnobotany to Pharmacology. Iranian Journal of Pharmaceutical Research . 2005 , 2 , 63-79. [9]. Raja, R. R., Medicinally potential plants of Labiatae (Lamiaceae) family: an overview. Research Journal of Medicinal Plant . 2012 , 6 , 203-213. [10]. Evstatieva L

Open access
Essential Oil Composition, Total Phenolic Content, and Antioxidant Activity - Determined from Leaves, Flowers and Stems of Origanum Vulgare L. Var. Aureum

References Bekut, M., Brkić, S., Kladar, N., Dragović, G., Gavarić, N., Božin, B., 2017. Potential of selected Lamiaceae plants in anti(retro)viral therapy. Pharmacological Research. Bosabalidis, A.M., 2003. Structural features of Origanum sp., in: Kintzios, S.E. (Ed.), Oregano: The genera Origanum and Lippia. Taylor & Francis, London, pp 11-64. Catana, R., Holobiuc, I., Mitoi, M., 2017. The antioxidant properties of Gentianalutea root cultures. AgroLife Scientific Journal6, 51-57. Chizzola, R

Open access
In vivo antioxidant potential of Teucrium polium, as compared to α-tocopherol

Teucrium species ( Lamiaceae ) on lipid peroxidation in rat liver microsomes, Fresenius Environ. Bull. 14 (2005) 957-959. G. Fonta, G. Savona and B. Redriguez, Usual 6'-fatty acid esters of (24S-24-ethyl-cholesta-5,25-dien-3β-yl-β-D-Glucopyranoside) from Teucrium polium, J. Ethnopharmacol. 24 (1999) 93-99. D. A. Mini, P. Zhang, X. Zhao, S. Wang Chong and Q. Zheno, A neo clerodane diterpene from Teucrium japonicum, Phytochemistry 30 (1991) 4175-4177. S. Cozzani, A. Muselli, J. M

Open access
Chromosome numbers and karyotype features of Phlomis olivieri Benth. (Lamiaceae) from Iran

References Albaladejo, R. G., Aguilar, J. F., Aparicio, A., Feliner, G. N., 2005: Contrasting nuclear-plastidial phylogenetic patterns in the recently diverged Iberian Phlomis crinita and P. lychnitis lineages (Lamiaceae). Taxon 54, 987–998. Aparicio, A., 1997: Fitness components of the hybrid Phlomis × Margaritae Aparicio & Silvestre (Lamiaceae). Botanical Journal of the Linnean Society 124, 331–343. Aparicio, A., Albaladejo, R. G., 2003: Microsporogenesis and meiotic abnormalities in the hybrid complex of Phlomis composita (Lamiaceae

Open access
Mericarp micromorphology and anatomy of Salvia hedgeana Dönmez, S. huberi Hedge and S. rosifolia Sm. (section Salvia Hedge, Lamiaceae)

University Press, Edinburg. Doğan, M., Akaydin, G., Celep, F., Bagherpour, S., Kahraman, A., Karabacak, E., 2007: Infrageneric delimitation of Salvia L. (Labiatae) in Turkey. Proceedings 7 International Symposium on plant life of southwest Asia, Eskişehir, 1-12. Dönmez, A., 2001: A new Turkish species of Salvia L. (Lamiaceae). Botanical Journal of the Linnean Society 137, 413-416. Duletić-Lauševic, S., Marin, P. D., 1999: Pericarp structure and myxocarpy in selected genera of Nepetoideae

Open access
Phenolic compounds of herbal infusions obtained from some species of the Lamiaceae family

REFERENCES 1. The Plant List: http://www.theplantlist.org . 2. Carovic-Stanko K, Petek M, Grdiša M, et al. Medicinal plants of the family Lamiaceae as functional foods – a review. Czech J. Food Sci. 2016;34 (5):377-90. 3. Gougoulias N, Mashev N. Antioxidant activity and polyphenols content of some herbal teas of Lamiaceae family from Greece and Bulgaria. Oxid Commun. 2015;38(1):25-34. 4. Kakasy AZ. New phytochemical data on Dracocephalum species/Theses of the PhD dissertation. Budapest, 2006:14. 5. Shanaida M, Ivanusa I, Κernychna I

Open access
The impact of spatio-temporal changes in flora attributes and pollen availability on insect visitors in Lamiaceae species

predictive value of nectar chemistry to the recognition of pollinator types. Israel Journal of Botany 39, 157–166. Banaszak-Cibicka, W., Żmihorski, M., 2012: Wild bees along an urban gradient: winners and losers. Journal of Insect Conservation 16, 331–343. Bożek, M., 2000: Flower-pollinating insects of 32 species from Lamiaceae family. Pszczelnicze Zeszyty Naukowe 44, 293–303. Bożek, M., 2003a: Foraging activity of Apis mellifera in the species from Lamiaceae family. Annales UMCS, sec EEE 12, 67–74 (in Polish). Bożek, M., 2003b: Pollen efficiency

Open access
Assay of flavonoid aglycones from the species of genus Sideritis (Lamiaceae) from Macedonia with HPLC-UV DAD

and H. Duddek, Flavonoid glycosides from Sideritis species, Fitoterapia 64 (1993) 278--279. A. A. Sattar, Flavonoids and Terpenoids in Some Representatives of Lamiaceae Family , PhD Thesis, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia 1994. A. Lenherr, B. Meier and O. Sticher, Modern HPLC as a tool for chemotaxonomical investigations: iridoid glucosides and acetylated flavonoids in the group of Stachys recta, Planta Medica 1984 , 365

Open access
Antimicrobial Activity of Three Lamiaceae Essential Oils Against Common Oral Pathogens

Research Centre, 2002; 27:25-35. 24. Nedorostova L, Kloucek P, Kokoska L, Stolcova M, Pulkrabek J. Antimicrobial properties of selected essential oils in vapour phase against foodborne bacteria. Food Control, 2009; 20:157-160. 25. Mazzanti G, Battinelli L, Salvatore G. Antimicrobial properties of the linalol-rich essential oil of Hyssopus officinalis L. vardecumbens (Lamiaceae). Flavour Fragr J, 1998; 13:289-294. 26. Džamić AM, Soković MD, Novaković M, Jadranin M, Ristić MS, Tešević V, Marin PD. Composition, antifungal and

Open access
Chemical Composition of the Essential Oil of Aerial Parts of Thymus ciliatus (Desf.)

Abstract

The essential oil of the aerial parts of Thymus ciliatus (Desf.) belonging to the Lamiaceae family, was obtained by steam distillation and analyzed by GC-FID and GC-MS. 75 components were identified corresponding to 95.57% of the total oil. The major constituents of the oil were: elemol (6.80%), carvacrol (5.86%), γ-muurolene (5.18%), β-sesquiphellandrene (5.09%), bicyclogermacrene (5.04%), β-pinene (4.49%) and curcumene (4.20%), together with other compounds at relatively low levels: 1,8-cineol (3.66%), β-eudesmol (2.92%), β-bisabolene (2.81%), β-silinene (2.75%), camphor (2.64%), germacrone (2.34%), α-zingiberene (2.12%), δ-cadinene (2.08%), caryophyllene oxide (1.90%), spathulenol (1.88%), □-caryophyllene (1.88%), ar-turmerone (1.79%), α-pinene (1.52%), limonene (1.52%), selina-4,11-diene (1.46%), curzerenone (1.41%), germacrone B (1.37%), bornyl acetate (1.31%), β-farnesene (1.28%), borneol (1.23%), myrtenal (1.16%), zingiberenol (1.15%) and sabinene (1.13%). These results differ from those of previous studies reported on this species collected from other regions of Algeria and Morocco.

Open access