Search Results

1 - 10 of 38 items :

Clear All

References A rslan , A., Z ima , J., K oubínová , D., Y orulmaz , T., T oyran , K., G özütok , S., 2013. Karyotypes of three gerbil species of the genera Tatera and Gerbilliscus from Turkey and Senegal. North-Western Journal of Zoology , 9: 57–62. B â , K., K ane , M., G authier , P., G ranjon , L., 2013. Ecology of a typical West African Sudanian savannah rodent community. African Journal of Ecol ogy, 51: 447–455. C hidumayo , E.N., 1980. Population ecology of Tatera leucogaster (Rodentia) in southern Zambia. Journal of Zoology , 190 (3): 44–49. C hoate , T

the effect on mast cells distribution in the stomach of Mongolian gerbils (Meriones unguiculatus). Parasitol. Res., 102(4): 587–595. DOI: 10.1007/s00436-007-0792-4 http://dx.doi.org/10.1007/s00436-007-0792-4 [19] Lee, D. L. (1996): Why do some nematode parasites of the alimentary tract secrete acetylcholinesterase? Int. J. Parasitol., 26(5): 499–508 http://dx.doi.org/10.1016/0020-7519(96)00040-9 [20] Mallet, S., Hoste, H. (1995): Physiology of two strains of Trichostrongylus colubriformis resistant and susceptible to thiabendazole and mucosal response of

[1] Borecka, A. (2004): Differentiation of Toxocara spp. eggs isolated from the soil by PCR-linked RFLP. Helminthologia, 41: 185–187 [2] Cho, S., Egami, M., Ohnuki, H., Saito, Y., Chinone S., Shichinohe, K., Suganuma, M., Akao, N. (2007): Migration behaviour and pathogenesis of five ascarid nematode species in the Mongolian gerbil Mariones unguiculatus. J. Helminth; 81: 43–47 http://dx.doi.org/10.1017/S0022149X07212118 [3] Jacobs, D. E., Zhu, X., Gasser, R. B., Chilton, N. B. (1997): PCR-based methods for identification of potentially zoonotic ascaridoid

. doi: 10.1186/1756-3305-2-S2-S1. Court JP, Lees GM (1985): The efficacy of benzimidazole anthelmintics against late fourth stage larvae of Trichostrongylus colubriformis in gerbils and Nippostrongylus brasiliensis in rats. Veterinary Parasitology, 18, 359–365. doi: 10.1016/0304-4017(85)90070-6. Durette-Desset MC, Beveridge I, Spratt DM (1994): The origins and evolutionary expansion of the Strongylida (Nematoda). International Journal of Parasitology, 24, 1139–1165. doi: 10.1016/0020-7519(94)90188-0. Jankovska I, Langrova I, Vadlejch J (2003a): Arrested development of

Abstract

Between 2005 and 2015 I undertook eight trips to Jordan during which I collected pellets from seven owl species. In them 14,203 food items were identified. Mammals (Mammalia, 46 species, 37.9% of prey items) formed the most numerous component, invertebrates (Evertebrata) made up 33.4%, birds (Aves, 25.4%) were represented with at least 104 species, reptiles (Reptilia) came to 3.2%, and two species of amphibian were identified (Amphibia, 0.2%). Pharoah eagle owls (Bubo ascalaphus) and Byzantine eagle owls (Bubo bubo interpositus) primarily hunt larger mammals and birds, although Agamidae and Scorpiones were also represented more frequently among B. ascalaphus. Mammals predominated among tawny owls (Strix aluco wilkonskii) (Mammalia, 58.9%), mainly the eastern rock mouse (Apodemus mystacinus) (24.9%). For wintering long-eared owls Asio otus otus the most important food was small birds (Aves, 78.3%), especially house sparrows (Passer domesticus), Fringillidae and Sylviidae. For barn owls (Tyto alba erlangeri) the principal prey was small mammals (83.1%), mainly mice (Mus sp.), Günther’s vole (Microtus guentheri), grey hamster (Cricetulus migratorius) and shrews (Soricidae). Hume’s tawny owl (Strix butleri) pellets contained mostly invertebrates (58.9%) and lizards, and their most frequent mammal prey were Wagner’s gerbil (Gerbillus dasyurus) and spiny mice (Acomys sp.). There was an even higher propostion of invertebrates (86.4%) among lilith owlets (Athene lilith). In addition to the insect orders Coleoptera, Orthoptera and Hymenoptera, remains of Scorpiones and Solifugae were also frequently found. The summarized results from individual owl species are compared with those gathered by the author in the surrounding Middle Eastern countries: Israel, Syria, Lebanon and Egypt.

References Akimov I. A., Nebogatkin I. V. Composition of tick species (Acarina, Ixodidae) in Ukraine // Vestnik zoologii. — 1997. — 31 . — 3. — P. 75-77. — Russian : Акимов И. А., Небогаткин И. В. Видовой состав иксодовых клещей (Acarina, Ixodidae) Украины. Dubrovsky Y. A., Burdelov A. S., Zhernovov I. V. et al. The final map the great gerbil in the Central Asia and Kazakhstan by grid fields // Modern Problems of zoogeography. — Moscow : Nauka, 1980. — P. 167-180. — Russian : Дубровский Ю. А., Бурделов А. С, Жерновов И. В. и др. Составление карты ареала

Helicobacter species in dogs from random sources and pet dogs: animal and public health implications. Journal of Clinical Microbiology , 34(12):3, 165–245. 5. Flahou, B., Haesebrouck F., Pasmans, F., D’Herde, K., Driessen, A., Van Deun, K., … Ducatelle, R. (2010). Helicobacter suis causes severe gastric pathology in mouse and Mongolian gerbil models of human gastric disease. PLoS One , 5(11), 1–11. 6. Fukui, H., Franceschi, F., Penland, R.L., Sakai, T., Sepulveda, A.R., Fujimori, T., … Genta, R.M. (2003). Effects of Helicobacter pylori infection on the link between

. Stivens A, Lowe J. Human histology, 2-nd ed. London: Mosby; 1997. 14. Kocova M. Avtoimun tiroidit vo detstvoto, Novini vo pedijatrijata/Godisna revija. 2009; 45-54. 15. Kocova M, Anastasovska V, Sukarova-Angelovska E, Gjurkova B. Neonatal Thyroid Screening in the Republic of Macedonia. Balkan Journal of Medical Genetics. 2006; 9: 124. 16. Laboratory Animal Anesthesia. 1996. Flecknell P. Academic Press, London. 274 pp. 17. Lima J.P, Ariga S, Velasco I and Schochat E. Effect of the ketamine/xylazine anesthetic on the auditory brainstem respons of adult gerbils. Braz J Med

. Kuder T.: The ciliary ganglion in mouse. Folia Morphol 1986, 45 , 80-85. 12. Kuder T.: Autonomic nervous system. Edited by AS, Kielce, Poland, 2002 (in Polish). 13. Kuder T., Kuchinka J., Nowak E., Szczurkowski A., Radzimirska M.: A comparative study on the morphology and topography of the ciliary ganglion in midday gerbil ( Meriones meridianus ) and turtle ( Agrionemys horsfieldii ). Ann Anat 2003, 185 , 351-357. 14. Kuder T., Szczurkowski A.: Morphology, topography and cytoarchitectonics of the ciliary ganglion of Syrian hamster (Mesocricetus auratus W. 1839

): Echinococcus vogeli cysts in paca liver (Cuniculus paca) native from the Acre State, Brazil. Rev. Soc. Bras. Med. Trop., 23: 153–155 [7] Mohanty, M. C., Ravindran, B. (2002): Deficiency of antibody responses to T-independent antigens in gerbils — Meriones unguiculatus. Dev. Comp. Immunol., 26: 385–391. DOI: 10.1016/S0145-305X(01)00086-6 http://dx.doi.org/10.1016/S0145-305X(01)00086-6 [8] Xiao, N., Li, T. Y., Qiu, J. M., Nakao, M., Chen, X. W., Nakaya, K., Yamasaki, H., Schantz, P. M., Craig, P. S., Ito, A. (2004): The Tibetan hare Lepus oiostolus: a novel intermediate host