Search Results

1 - 10 of 351 items :

Clear All

using portland cement, fly ash and polymeric materials, J. Hazardous Mat , B131 ( 2006 )29 - 36. Aguilar-Carrillo J. Garrido F., Barrios L., Garcia-Gonzalez M. T.: Sorption of As, Cd and Tl as influenced by industrial by-products applied to an acidic soil: Equilibrium and kinetics experiments, Chemosphere , 65 ( 2006 )2377 - 2387. Ugurlu A.: Leaching characteristic of fly ash, Environmental Geology , vol. 46 , pp. 890 - 895, 2004 . Twardowska I., Szczepańska J.: Solid waste: terminological and long-term environmental risk assessment problems exemplified in a

, 900–913. [6] Ahmaruzzaman M., A review on the utilization of fly ash , Progress in Energy and Combustion Science, Vol. 36, 327–363. [7] Baran T., Ostrowski M., Giergiczny Z., Wykorzystanie mieszanych popiołów lotnych z oddzielnego spalania pyłu węglowego i paliw wtórnych w produkcji spoiw wiążących , Materiały Budowlane, Vol. 12, 2015, 37–40. [8] Giergiczny Z., Właściwości popiołu lotnego a trwałość betonu, Budownictwo Technologie Architektura, Vol. 39, 2007, 44–48. [9] Cuenca J., Rodriguez J., Martín-Morales M., Sánchez-Roldán Z., Zamorano M., Effects of olive

References 1. Gregerova, M. (2007). Technolithology, present and future prospect. Acta Geologica Universitatis Comenianae, 1 (1), 7. 2. Gregerova, M., Fojt, B. & Vavra, V. (2002). Microscopy of rock-forming and technical minerals. Moravian museum, Masaryk University Brno, Faculty of Science , 325, [in Czech]. 3. Mason, B. & Berry, L.G. (1968). Elements of mineralogy. W. H. Freeman and Company, San Francisco, 550. 4. Dana, K., Das, S. & Kumar, D.S. (2004). Effect of substitution of fly ash for quartz in triaxial kaolin-quartz-feldspar system. Journal of the

] CAŁUS-MOSZKO, J., BIAŁECKA, B. Analysis of the possibilities of rare earth elements obtaining from coal and fly ash. Gospodarka Surowcami Mineralnymi - Mineral Resources Management. 2013, 29(1), 67-80. [5] EC-EUROPEAN COMMISSION 2010. Critical Raw Materials for the EU: Report of the Ad-hoc Working Group on defining critical raw materials. Brussels: Raw Materials Supply Group, 2010. 84 p. [6] ECOBA 2010, European Coal Combustion Products Association e.V., CCPs Production 2010 - [cit. 10.10.2015]. [7] Energy Statistics in 2013 and 2014 [online]. Statistical Information

References Amini F, Zabihi-Samani M (2014) A Wavelet-Based Adaptive Pole Assignment Method for Structural Control Computer-Aided Civil and Infrastructure Engineering 29:464-477 doi:10.1111/mice.12072. Arulrajah A, Mohammadinia A, Horpibulsuk S, Samingthong W (2016) Influence of class F fly ash and curing temperature on strength development of fly ash-recycled concrete aggregate blends Construction and Building Materials 127:743-750 doi: . Blissett RS, Rowson NA (2012) A review of the multi-component utilisation

References AMRHEIN CH., HAGINA G.H., KIM T.S., MOSHER P.A., GAGAJENA R.C., AMANIOS T., TORRE DE LA L., 1996: Synthesis and properties of zeolites from fly ash. Environmental Science and Technology 30, 735-742. ARMSTRONG J.A., DANN S.E., 2000: Investigation of zeolite scales formed in the Bayer process. Microporous Mesoporous Materials 41, 89-97. BAERLOCHER CH., MEIER W.M., OLSON D.H., 2001: Atlas of zeolite framework types. Str. Comm. IZA. 5th Revised Edition, Elsevier, London Boston Singapore Sydney Toronto Wellington. BERKGAUT V., SINGER A., 1996: High

References ABD EL-RAHMAN, K.M., EL-KAMASH, A.M., EL-SOUROUGY, M.R., ABDELMONIEM, N.M.: Thermodynamic modeling for the removal of Cs+, Sr2+, Ca2+, and Mg2+ ions from aqueous waste solutions using zeolite A. J. Radioanal. Nucl. Chem., 268, 2006, 221-230. ABDEL-RAHMAN, R.O., IBRAHIUM, H.A., HUNG, Y.-T.: Liquid radioactive wastes treatment: a review. Water, 3, 2011, 551-565. AHMARUZZAMAN, M.: A review on the utilization of fly ash. Prog. Energy Combust. Sci., 36, 2010, 327-363. AMRHEIN, C., HAGHNIA, G.H., KIM, T.S., MOSHER, P.A., GAGAJENA, R.C., AMANIOS, T., DE LA

ash, rice husk ash and fly ash. Construction of Building Materials [online] May, 2008. Volume 22, Issue 5, pp. 932-938. [cited 10.05.2012]. Accessible from < >. [4] MARJANOVIĆ, N., KOMLJENOVIĆ, M., BAŠČAREVIĆ, Z., NIKOLIĆ, V. 2014. Improving reactivity of fly ash and properties of ensuing geopolymers through mechanical activation. Construction and Building Materials [online] 25.02.2014. Volume 57, pp.151-162. [cited 10.05.2015]. Accessible from < http


The objective of the present study is to assess the efficiency of fly ash and fly ash agglomerates to remove arsenic(III) from aqueous solution. The maximum static uptakes were achieved to be 13.5 and 5.7 mgAs(III)/adsorbent for nonagglomerated material and agglomerated one, respectively. Isotherm studies showed good fit with the Langmuir (fly ash) and the Freundlich (fly ash agglomerates) isotherm models. Kinetic studies indicated that the sorption of arsenic on fly ash and its agglomerates follows the pseudo-second-order (PSO) chemisorption model (R2 = 0.999). Thermodynamic parameters revealed an endothermic nature of As(III) adsorption on such adsorbents. The adsorption results confirmed that fly ash and its agglomerates can be used for As(III) removal from aqueous solutions. Fly ash can adsorb more arsenic(III) than agglomerates, which are easier to use, because this material is less dusty and easier to separate from solution.

References 1. K. Zabielska-Adamska, Fly ash as a material for constructing sealing layers [in Polish], Publishing House of Bialystok University of Technology, Bialystok 2006. 2. K. Zabielska-Adamska, Laboratory compaction of fly ash and fly ash with cement addition , Journal of Hazardous Material, 151 , 2-3, 48-489, 2008. 3. K. Zabielska-Adamska, Shear strength parameters of compacted fly ash-HDPE geomembrane interfaces , Geotextiles & Geomembranes, 24 , 2, 91-102, 2006. 4. Y.M. Najjar, I.A. Basheer, W.A. Naouss, On the identification of compaction