Search Results

1 - 10 of 1,269 items :

  • "Finite element" x
Clear All

(4), 409–432. [11] P aice G.M., G riffiths D.V., F enton G.A., Finite element modeling of settlements on spatially random soil , J. Geotech. Eng., 1996, 122(9), 777–779. Smith, I. M., and Griffiths, [12] F enton G.A., G riffiths D.V., Statistics of block conductivity through a simple bounded stochastic medium , Water Resour. Res., 1993, 29(6), 1825–1830. [13] F enton G.A., G riffiths D.V., Probabilistic foundation settlement on spatially random soil , J. Geotech. Geoenviron. Eng., 2002, 128(5), 381–390. [14] F enton G.A., G riffiths D.V., Three

element formulation for incompressible and nearly-incompressible cardiac mechanics. Comput Method Appl M 274:213-236. doi: 10.1016/j.cma.2014.02.009. Mustafy T. - El-Rich M. - Mesfar W. - Moglo K .(2014) Investigation of impact loading rate effects on the ligamentous cervical spinal load-partitioning using finite element model of functional spinal unit C2-C3. J Biomech 47:2891-2903. doi: 10.1016/j.jbiomech.2014.07.016. Wex C. - Arndt S. - Stoll A. - Bruns C. - Kupriyanova Y. (2015) Isotropic incompressible hyperelastic models for modelling the mechanical behaviour of

REFERENCES [1] Murin, J., Aminbaghai, M., Hrabovsky, J., Gogola, R., Kugler, S. “Beam finite element for modal analysis of FGM structures”, Eng. Struct. 121, pp. 1 – 18, 2016 . [2] Tsipsis, I. N., Sapountzakis, E. J. “Generalized warping and distortional analysis of curved beams with isogeometric methods”, Comp. Struct. 191, pp. 33 – 50, 2017 . [3] Yoon, K., Lee, P.S., Kim, D.N. “Geometrically nonlinear finite element analysis of functionally graded 3D beams considering warping effects”, Comp. Struct. 132, pp. 1231 – 1247, 2015 . [4] Abrate, S., Sciuva M. D

and languages, Machine Graphics and Vision 2(2): 149-178. Grabska, E. and Strug, B. (2005). Applying cooperating distributed graph grammars in computer aided design, in R.Wyrzykowski, J. Dongarra, N.Meyer and J.Wa´sniewski (Eds.), Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science, Vol. 3911, Springer, Berlin/Heidelberg, pp. 567-574. Hild, P. (2011). A sign preserving mixed finite element approximation for contact problems, International Journal of Applied Mathematics and Computer Science 21(3): 487-498, DOI: 10.2478/v10006

, V., Korumaz, A. G., and Fiorini, L. (2017). An integrated Terrestrial Laser Scanner (TLS), Deviation Analysis (DA) and Finite Element (FE) approach for health assessment of historical structures. a minaret case study. Engineering Structures, 153:224-238, doi: doi.org/10.1016/j.engstruct.2017.10.026 . Lipecki, T., Jaskowski, W., Matwij, W., and Skoblinski, W. (2017). Zastosowanie skanera Faro Focus X330 w ocenie pionowosci komina o wysokosci 220 m (Use of the laser scanner Faro Focus X330 in the assessment of the verticality of the chimney with a height of 220 m

References 1. Stomatološki fakultet. Stomatološki materijali knjiga 2: Beograd; 2012. 2. Ming-Lun Hsu, Chih-Ling Chang, Application of Finite Element Analysis in Dentistry, Finite Element Analysis, ed. David Moratal, 2010. 3. Geng J, Yan W, Xu W (Eds.). Application of the Finite Element Method in Implant Dentistry, ISBN: 978-3-540- 73763-6, Springer, 2008. 4. Duygu Koc, Arife Dogan, and Bulent Bek, Bite Force and Influential Factors on Bite Force Measurements: A Literature Review. Eur J Dent, 2010;4:223-232. 5. Olmsted MJ, Wall CE, Vinyard CJ. Human bite force

., Skibicki, D.: Criteria Evaluation for Fatigue Life Estimation under Proportional and Non-Proportional Loadings. Mater. Sci. Forum. 726, 189-192 (2012). 5. Design principles - technical safety. NORSOK S-DP-001. 6. Macgillivray, H.: The Development of Standards for Instrumented Charpy Testing. 1-34 (2008). 7. Stephens, R.I., Fatemi, A., Stephens, R.R., Fuchs, H.O.: Metal Fatigue in Engineering. Wiley (2000). 8. Żyliński, B.: Finite element local analysis of wave slamming on offshore structure. Polish Maritime Research, 1, 8-12 (2009). 9. Augustyniak, M., Porembski, G

References [1] Y. Achdou and O. Pironneau, Computational methods for option pricing, Society for Industrial and Applied Mathematics, (2005). [2] Z. Al-Zhour, M. Barfeie, F. Soleymani, and E. Tohidi, A computational method to price with transaction costs under the nonlinear Black-Scholes model, CMES-Comp Model. Eng., 124 (2020), 61–78. [3] A. Andalaft-Chacur, M. M. Ali and J. G. Salazar, Real options pricing by the finite element method, Comput. Math. Appl., 61 (2011), pp. 2863–2873. [4] F. Black and M. Scholes, The pricing of options and corporate liabilities, J

Russian). 5. Choi J-H., Lee I. (2003), Transient thermoelastic analysis of disk brakes in frictional contact, Journal of Thermal Stresses, Vol. 26, No. 3, 223-244. 6. Choi J-H., Lee I. (2004), Finite element analysis of transient thermoelastic behaviors in disk brakes, Wear, Vol. 257, 47-58. 7. Collignon M., Cristol A-L., Dufrénoy P., Desplanques Y., Balloy D. (2013), Failure of truck brake discs: A coupled numerical- experimental approach to identifying critical thermomechanical loadings, Tribology International, Vol. 59, 114-120. 8. Dufrénoy P. (2004), Two

References Adams, R. (1975). Sobolev Spaces , Academic Press, New York, NY/London. Belhachmi, Z., Sac-EpéeAe, J.-M. and Sokolowski, J. (2005). Mixed finite element methods for smooth domain formulation of crack problems, SIAM Journal on Numerical Analysis 43(3): 1295-1320. Ben Belgacem, F. and Brenner, S. (2001). Some nonstandard finite element estimates with applications to 3D Poisson and Signorini problems, Electronic Transactions on Numerical Analysis 12: 134-148. Ben Belgacem, F., Hild, P. and Laborde, P. (1999). Extension of the mortar finite element